用于热塑性复合材料纤维自动铺放(AFP)的氙弧闪光灯加热系统的热特性

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Devang Tavkari, Vishnu V. Ganesan, Sandesh Amgai, Ankur Jain, Paul Davidson
{"title":"用于热塑性复合材料纤维自动铺放(AFP)的氙弧闪光灯加热系统的热特性","authors":"Devang Tavkari,&nbsp;Vishnu V. Ganesan,&nbsp;Sandesh Amgai,&nbsp;Ankur Jain,&nbsp;Paul Davidson","doi":"10.1016/j.compositesa.2024.108568","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a systematic experimental and simulations-based characterization of key thermal aspects of the arc-flash lamp based AFP heating is presented. Ex-situ measurements of heat flux output from the flash lamp as well as the resulting temperature field on a material sample are carried out in a geometry representative of actual manufacturing conditions, using a heat flux sensor and infrared thermography. A thermal simulation model is developed to predict the temperature field resulting from the measured heat flux data. Good agreement is found between experimental data and simulation predictions. This work contributes towards developing a fundamental understanding of heat transfer processes during AFP manufacturing. Data presented here may be of broad benefit to AFP-related research, and may contribute towards process design and optimization in order to further expand the capabilities of this promising additive manufacturing technology.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"190 ","pages":"Article 108568"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal characterization of Xenon-Arc flash lamp heating system for automated fiber placement (AFP) of thermoplastic composites\",\"authors\":\"Devang Tavkari,&nbsp;Vishnu V. Ganesan,&nbsp;Sandesh Amgai,&nbsp;Ankur Jain,&nbsp;Paul Davidson\",\"doi\":\"10.1016/j.compositesa.2024.108568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a systematic experimental and simulations-based characterization of key thermal aspects of the arc-flash lamp based AFP heating is presented. Ex-situ measurements of heat flux output from the flash lamp as well as the resulting temperature field on a material sample are carried out in a geometry representative of actual manufacturing conditions, using a heat flux sensor and infrared thermography. A thermal simulation model is developed to predict the temperature field resulting from the measured heat flux data. Good agreement is found between experimental data and simulation predictions. This work contributes towards developing a fundamental understanding of heat transfer processes during AFP manufacturing. Data presented here may be of broad benefit to AFP-related research, and may contribute towards process design and optimization in order to further expand the capabilities of this promising additive manufacturing technology.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"190 \",\"pages\":\"Article 108568\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X24005669\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24005669","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,系统的实验和基于仿真的表征电弧闪光灯的AFP加热的关键热方面。使用热流传感器和红外热成像技术,在代表实际制造条件的几何形状中对闪光灯输出的热流以及材料样品上产生的温度场进行了非原位测量。建立了一个热模拟模型来预测由实测热通量数据产生的温度场。实验数据与模拟预测吻合较好。这项工作有助于发展对AFP制造过程中传热过程的基本理解。这里提供的数据可能对afp相关的研究有广泛的好处,并可能有助于工艺设计和优化,以进一步扩大这种有前途的增材制造技术的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal characterization of Xenon-Arc flash lamp heating system for automated fiber placement (AFP) of thermoplastic composites
In this study, a systematic experimental and simulations-based characterization of key thermal aspects of the arc-flash lamp based AFP heating is presented. Ex-situ measurements of heat flux output from the flash lamp as well as the resulting temperature field on a material sample are carried out in a geometry representative of actual manufacturing conditions, using a heat flux sensor and infrared thermography. A thermal simulation model is developed to predict the temperature field resulting from the measured heat flux data. Good agreement is found between experimental data and simulation predictions. This work contributes towards developing a fundamental understanding of heat transfer processes during AFP manufacturing. Data presented here may be of broad benefit to AFP-related research, and may contribute towards process design and optimization in order to further expand the capabilities of this promising additive manufacturing technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信