考虑多流型渗流特性转变的海洋多孔介质波浪渗流评价

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Shihuan Zou , Maosong Huang , Zhenhao Shi
{"title":"考虑多流型渗流特性转变的海洋多孔介质波浪渗流评价","authors":"Shihuan Zou ,&nbsp;Maosong Huang ,&nbsp;Zhenhao Shi","doi":"10.1016/j.apor.2024.104346","DOIUrl":null,"url":null,"abstract":"<div><div>Wave-induced flow through marine porous media has been attracting coastal engineers and researchers because of their strong correlation with scouring, internal erosion, piping and other destructions of marine porous structures. Previous studies chose Darcy-Forchheimer equation for wave-induced seepage behavior analyses because of its simplicity and perceptiveness. However, numerous experiment observations suggested that significant flow regime transition occurred in porous media with high variations in porosity and particle size, while Darcy-Forchheimer equation is only applicable to flow within Forchheimer regime. In this paper, a mathematical model linking the resistance of porous medium to its porosity and particle size is proposed to characterize the seepage properties across Darcy and Forchheimer regime under wave loadings. The proposed seepage model is then incorporated into volume-averaged Reynolds-averaged Navier-Stokes equations, and thus enabling evaluating fluid motions in waves and marine porous media via a unified framework. Through validation against experimental observations, analytical solutions and well accepted computed results in the literature, the proposed model is shown to replicate the characteristics of resistance of porous media with different porosities and particle sizes under different flow regimes. Numerical analyses are conducted to elucidate that seepage velocities of wave-induced flow in marine porous materials can be over- or under-estimated if not considering transitional seepage properties across multiple flow regimes. Such discrepancies can become significant when strong variations occur in porous media with respect to particle size and/or porosity.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"154 ","pages":"Article 104346"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of wave-induced flow through marine porous media accounting for transition of seepage properties across multiple flow regimes\",\"authors\":\"Shihuan Zou ,&nbsp;Maosong Huang ,&nbsp;Zhenhao Shi\",\"doi\":\"10.1016/j.apor.2024.104346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wave-induced flow through marine porous media has been attracting coastal engineers and researchers because of their strong correlation with scouring, internal erosion, piping and other destructions of marine porous structures. Previous studies chose Darcy-Forchheimer equation for wave-induced seepage behavior analyses because of its simplicity and perceptiveness. However, numerous experiment observations suggested that significant flow regime transition occurred in porous media with high variations in porosity and particle size, while Darcy-Forchheimer equation is only applicable to flow within Forchheimer regime. In this paper, a mathematical model linking the resistance of porous medium to its porosity and particle size is proposed to characterize the seepage properties across Darcy and Forchheimer regime under wave loadings. The proposed seepage model is then incorporated into volume-averaged Reynolds-averaged Navier-Stokes equations, and thus enabling evaluating fluid motions in waves and marine porous media via a unified framework. Through validation against experimental observations, analytical solutions and well accepted computed results in the literature, the proposed model is shown to replicate the characteristics of resistance of porous media with different porosities and particle sizes under different flow regimes. Numerical analyses are conducted to elucidate that seepage velocities of wave-induced flow in marine porous materials can be over- or under-estimated if not considering transitional seepage properties across multiple flow regimes. Such discrepancies can become significant when strong variations occur in porous media with respect to particle size and/or porosity.</div></div>\",\"PeriodicalId\":8261,\"journal\":{\"name\":\"Applied Ocean Research\",\"volume\":\"154 \",\"pages\":\"Article 104346\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Ocean Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014111872400467X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014111872400467X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

摘要

波浪诱导的海洋多孔介质流动与海洋多孔结构的冲刷、内部侵蚀、管道等破坏密切相关,一直吸引着海岸工程师和研究人员的注意。以往的研究选择Darcy-Forchheimer方程进行波动渗流行为分析,因为它简单、直观。然而,大量的实验观察表明,在孔隙度和粒径变化较大的多孔介质中会发生明显的流型转变,而Darcy-Forchheimer方程仅适用于Forchheimer流型内的流动。本文提出了一种将多孔介质的阻力与其孔隙度和粒径联系起来的数学模型,以表征波浪荷载作用下达西和福奇海默状态下的渗流特性。然后将所提出的渗流模型整合到体积平均reynolds -平均Navier-Stokes方程中,从而可以通过统一的框架来评估波浪和海洋多孔介质中的流体运动。通过对实验观察、解析解和文献中广为接受的计算结果的验证,表明所提出的模型可以复制不同孔隙率和粒径的多孔介质在不同流动状态下的阻力特征。数值分析表明,如果不考虑多流型的过渡渗流特性,波浪渗流在海洋多孔材料中的渗流速度可能会被高估或低估。当多孔介质中颗粒大小和/或孔隙度发生强烈变化时,这种差异就会变得显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of wave-induced flow through marine porous media accounting for transition of seepage properties across multiple flow regimes
Wave-induced flow through marine porous media has been attracting coastal engineers and researchers because of their strong correlation with scouring, internal erosion, piping and other destructions of marine porous structures. Previous studies chose Darcy-Forchheimer equation for wave-induced seepage behavior analyses because of its simplicity and perceptiveness. However, numerous experiment observations suggested that significant flow regime transition occurred in porous media with high variations in porosity and particle size, while Darcy-Forchheimer equation is only applicable to flow within Forchheimer regime. In this paper, a mathematical model linking the resistance of porous medium to its porosity and particle size is proposed to characterize the seepage properties across Darcy and Forchheimer regime under wave loadings. The proposed seepage model is then incorporated into volume-averaged Reynolds-averaged Navier-Stokes equations, and thus enabling evaluating fluid motions in waves and marine porous media via a unified framework. Through validation against experimental observations, analytical solutions and well accepted computed results in the literature, the proposed model is shown to replicate the characteristics of resistance of porous media with different porosities and particle sizes under different flow regimes. Numerical analyses are conducted to elucidate that seepage velocities of wave-induced flow in marine porous materials can be over- or under-estimated if not considering transitional seepage properties across multiple flow regimes. Such discrepancies can become significant when strong variations occur in porous media with respect to particle size and/or porosity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信