碳纤维增强热塑性复合材料相间力学性能的多尺度数值计算

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Zheng Li , Bo Wang , Peng Hao , Kaifan Du , Zebei Mao , Tong Li
{"title":"碳纤维增强热塑性复合材料相间力学性能的多尺度数值计算","authors":"Zheng Li ,&nbsp;Bo Wang ,&nbsp;Peng Hao ,&nbsp;Kaifan Du ,&nbsp;Zebei Mao ,&nbsp;Tong Li","doi":"10.1016/j.compscitech.2024.110982","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs a multi-scale numerical calculations method based on molecular dynamics and finite element modeling to investigate the stress transfer mechanisms within the interphase of unidirectional (UD) carbon fiber reinforced thermoplastic polymers (CFRTP) composites, based on which exponential decay model (EDM) was developed to predict the interphase strength and modulus. Revealing that the interphase strength and modulus are approximately 0.5–0.7 times that of the fibre/interphase interface or 1.2 to 1.7 times matrix. The EDM was validated using a coupled experimental-representative volume element modeling method. By calibrating the interphase fracture energy, the mechanical properties predicted by the EDM aligned well with the experimental results of UD CFRTP composites. Finally, the damage evolution and failure modes were analyzed, revealing that the transverse failure of UD CFRTP composites is dominated by the interphase, while longitudinal failure is primarily governed by the fibers, consistent with scanning electron microscope observations. This confirms the accuracy of the EDM, and application this method can be used to quickly and accurately assess the strength and modulus of the interphase in CFRTP composites to significantly reduce the numerical analysis time.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"260 ","pages":"Article 110982"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale numerical calculations for the interphase mechanical properties of carbon fiber reinforced thermoplastic composites\",\"authors\":\"Zheng Li ,&nbsp;Bo Wang ,&nbsp;Peng Hao ,&nbsp;Kaifan Du ,&nbsp;Zebei Mao ,&nbsp;Tong Li\",\"doi\":\"10.1016/j.compscitech.2024.110982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study employs a multi-scale numerical calculations method based on molecular dynamics and finite element modeling to investigate the stress transfer mechanisms within the interphase of unidirectional (UD) carbon fiber reinforced thermoplastic polymers (CFRTP) composites, based on which exponential decay model (EDM) was developed to predict the interphase strength and modulus. Revealing that the interphase strength and modulus are approximately 0.5–0.7 times that of the fibre/interphase interface or 1.2 to 1.7 times matrix. The EDM was validated using a coupled experimental-representative volume element modeling method. By calibrating the interphase fracture energy, the mechanical properties predicted by the EDM aligned well with the experimental results of UD CFRTP composites. Finally, the damage evolution and failure modes were analyzed, revealing that the transverse failure of UD CFRTP composites is dominated by the interphase, while longitudinal failure is primarily governed by the fibers, consistent with scanning electron microscope observations. This confirms the accuracy of the EDM, and application this method can be used to quickly and accurately assess the strength and modulus of the interphase in CFRTP composites to significantly reduce the numerical analysis time.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"260 \",\"pages\":\"Article 110982\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824005529\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005529","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用基于分子动力学和有限元建模的多尺度数值计算方法研究了单向碳纤维增强热塑性聚合物(CFRTP)复合材料界面内的应力传递机制,并在此基础上建立了预测界面强度和模量的指数衰减模型(EDM)。界面强度和模量约为纤维/界面的0.5 ~ 0.7倍或基体的1.2 ~ 1.7倍。采用实验-代表性体元耦合建模方法对电火花加工进行了验证。通过对相间断裂能的标定,电火花预测的力学性能与UD CFRTP复合材料的实验结果吻合较好。最后,对UD CFRTP复合材料的损伤演化和破坏模式进行了分析,结果与扫描电镜观察结果一致,表明UD CFRTP复合材料的横向破坏主要受界面破坏主导,而纵向破坏主要受纤维破坏主导。这证实了电火花加工的准确性,应用该方法可以快速准确地评估CFRTP复合材料界面相的强度和模量,大大减少了数值分析时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-scale numerical calculations for the interphase mechanical properties of carbon fiber reinforced thermoplastic composites

Multi-scale numerical calculations for the interphase mechanical properties of carbon fiber reinforced thermoplastic composites
This study employs a multi-scale numerical calculations method based on molecular dynamics and finite element modeling to investigate the stress transfer mechanisms within the interphase of unidirectional (UD) carbon fiber reinforced thermoplastic polymers (CFRTP) composites, based on which exponential decay model (EDM) was developed to predict the interphase strength and modulus. Revealing that the interphase strength and modulus are approximately 0.5–0.7 times that of the fibre/interphase interface or 1.2 to 1.7 times matrix. The EDM was validated using a coupled experimental-representative volume element modeling method. By calibrating the interphase fracture energy, the mechanical properties predicted by the EDM aligned well with the experimental results of UD CFRTP composites. Finally, the damage evolution and failure modes were analyzed, revealing that the transverse failure of UD CFRTP composites is dominated by the interphase, while longitudinal failure is primarily governed by the fibers, consistent with scanning electron microscope observations. This confirms the accuracy of the EDM, and application this method can be used to quickly and accurately assess the strength and modulus of the interphase in CFRTP composites to significantly reduce the numerical analysis time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信