la0.4 sr0.6 coo3催化乙苯无溶剂选择性氧化制苯乙酮:由1O2衍生的•O2 -介导的新的活性氧转化机制

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weiwen Mao, Jiaheng Qin, Miao Li, Ming Chen, Wangyu Fu, Zongyan Ma, Jing Chen, Tongtong Fan, Yu Long* and Jiantai Ma*, 
{"title":"la0.4 sr0.6 coo3催化乙苯无溶剂选择性氧化制苯乙酮:由1O2衍生的•O2 -介导的新的活性氧转化机制","authors":"Weiwen Mao,&nbsp;Jiaheng Qin,&nbsp;Miao Li,&nbsp;Ming Chen,&nbsp;Wangyu Fu,&nbsp;Zongyan Ma,&nbsp;Jing Chen,&nbsp;Tongtong Fan,&nbsp;Yu Long* and Jiantai Ma*,&nbsp;","doi":"10.1021/acssuschemeng.4c0677510.1021/acssuschemeng.4c06775","DOIUrl":null,"url":null,"abstract":"<p >Developing a green, stable, and cost-effective heterogeneous catalyst and clarifying its catalytic mechanism for the selective oxidation of C–H bonds without solvent to carbonyl compounds hold a significant theoretical and practical value. Herein, we synthesize perovskite catalysts using the sol–gel method to catalyze the selective oxidation of ethylbenzene. Notably, La<sub>0.4</sub>Sr<sub>0.6</sub>CoO<sub>3</sub>-800 (800 °C is the calcination temperature of the catalyst) demonstrates remarkable efficacy, converting 73% of ethylbenzene into acetophenone with a selectivity of 93%. Characterization analyses reveal that the incorporation of strontium moderately disrupts the internal balance of the perovskite structure, leading to increased oxygen vacancies and enhanced oxygen adsorption capacity. Moreover, electron paramagnetic resonance and mechanistic studies prove that molecular oxygen on the catalyst surface is converted to singlet oxygen (<sup>1</sup>O<sub>2</sub>) and superoxide radical anions (<sup>•</sup>O<sub>2</sub><sup>–</sup>). The presence of <sup>1</sup>O<sub>2</sub> significantly aids in the production of <sup>•</sup>O<sub>2</sub><sup>–</sup>, thereby effectively promoting the oxidation of ethylbenzene. This research introduces a new reactive oxygen species (ROS) transformation mechanism and provides valuable insights into the selective oxidation of hydrocarbons.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 48","pages":"17556–17565 17556–17565"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2\",\"authors\":\"Weiwen Mao,&nbsp;Jiaheng Qin,&nbsp;Miao Li,&nbsp;Ming Chen,&nbsp;Wangyu Fu,&nbsp;Zongyan Ma,&nbsp;Jing Chen,&nbsp;Tongtong Fan,&nbsp;Yu Long* and Jiantai Ma*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.4c0677510.1021/acssuschemeng.4c06775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing a green, stable, and cost-effective heterogeneous catalyst and clarifying its catalytic mechanism for the selective oxidation of C–H bonds without solvent to carbonyl compounds hold a significant theoretical and practical value. Herein, we synthesize perovskite catalysts using the sol–gel method to catalyze the selective oxidation of ethylbenzene. Notably, La<sub>0.4</sub>Sr<sub>0.6</sub>CoO<sub>3</sub>-800 (800 °C is the calcination temperature of the catalyst) demonstrates remarkable efficacy, converting 73% of ethylbenzene into acetophenone with a selectivity of 93%. Characterization analyses reveal that the incorporation of strontium moderately disrupts the internal balance of the perovskite structure, leading to increased oxygen vacancies and enhanced oxygen adsorption capacity. Moreover, electron paramagnetic resonance and mechanistic studies prove that molecular oxygen on the catalyst surface is converted to singlet oxygen (<sup>1</sup>O<sub>2</sub>) and superoxide radical anions (<sup>•</sup>O<sub>2</sub><sup>–</sup>). The presence of <sup>1</sup>O<sub>2</sub> significantly aids in the production of <sup>•</sup>O<sub>2</sub><sup>–</sup>, thereby effectively promoting the oxidation of ethylbenzene. This research introduces a new reactive oxygen species (ROS) transformation mechanism and provides valuable insights into the selective oxidation of hydrocarbons.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"12 48\",\"pages\":\"17556–17565 17556–17565\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c06775\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c06775","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发一种绿色、稳定、经济的多相催化剂,阐明其无溶剂C-H键选择性氧化羰基化合物的催化机理,具有重要的理论和实用价值。本文采用溶胶-凝胶法合成钙钛矿催化剂,催化乙苯的选择性氧化。值得注意的是,La0.4Sr0.6CoO3-800(800℃为催化剂的煅烧温度)表现出了显著的效果,将73%的乙苯转化为苯乙酮,选择性为93%。表征分析表明,锶的掺入适度破坏了钙钛矿结构的内部平衡,导致氧空位增加,氧吸附能力增强。此外,电子顺磁共振和机理研究证明,催化剂表面的分子氧转化为单线态氧(1O2)和超氧自由基阴离子(•O2 -)。1O2的存在显著地促进了•O2 -的生成,从而有效地促进了乙苯的氧化。本研究介绍了一种新的活性氧(ROS)转化机制,为烃类的选择性氧化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2

La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2

Developing a green, stable, and cost-effective heterogeneous catalyst and clarifying its catalytic mechanism for the selective oxidation of C–H bonds without solvent to carbonyl compounds hold a significant theoretical and practical value. Herein, we synthesize perovskite catalysts using the sol–gel method to catalyze the selective oxidation of ethylbenzene. Notably, La0.4Sr0.6CoO3-800 (800 °C is the calcination temperature of the catalyst) demonstrates remarkable efficacy, converting 73% of ethylbenzene into acetophenone with a selectivity of 93%. Characterization analyses reveal that the incorporation of strontium moderately disrupts the internal balance of the perovskite structure, leading to increased oxygen vacancies and enhanced oxygen adsorption capacity. Moreover, electron paramagnetic resonance and mechanistic studies prove that molecular oxygen on the catalyst surface is converted to singlet oxygen (1O2) and superoxide radical anions (O2). The presence of 1O2 significantly aids in the production of O2, thereby effectively promoting the oxidation of ethylbenzene. This research introduces a new reactive oxygen species (ROS) transformation mechanism and provides valuable insights into the selective oxidation of hydrocarbons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信