Werner Oberhauser*, Claudio Evangelisti*, Xuan Trung Nguyen, Jonathan Filippi, Lorenzo Poggini, Laura Capozzoli, Gabriele Manca, Ella A. Kitching, Thomas J. A. Slater and Mohsen Danaie,
{"title":"Pt纳米颗粒形貌对水中乙二醇好氧氧化制乙醇酸的影响","authors":"Werner Oberhauser*, Claudio Evangelisti*, Xuan Trung Nguyen, Jonathan Filippi, Lorenzo Poggini, Laura Capozzoli, Gabriele Manca, Ella A. Kitching, Thomas J. A. Slater and Mohsen Danaie, ","doi":"10.1021/acs.inorgchem.4c0397010.1021/acs.inorgchem.4c03970","DOIUrl":null,"url":null,"abstract":"<p >Pt nanoparticles (diameter <3 nm), generated by metal vapor synthesis and supported on a high surface area carbon, were used to catalyze the aerobic oxidation of ethylene glycol to glycolic acid (GA) in water under neutral and basic reaction conditions. Controlled heat treatment of the catalyst under a nitrogen atmosphere brought about the formation of a morphologically well-defined catalyst. A combination of atomic resolution electron microscopy, CO stripping voltammetry, and XPS analyses conducted on as-synthesized and heat-treated catalysts demonstrated the crucial role of the nanoparticles’ morphology on the stabilization of catalytically highly active Pt–OH surface species, which were key species for the Pt-catalyzed oxidation of the alcohol to the carbonyl functionality. The boosting effect of base on the catalyst’ s activity and GA selectivity has been proved experimentally (autoclave experiments). The effect of base on the nonmetal-catalyzed reaction steps (i.e., aerobic oxidation of carbonyl to acid functionality) has been proved by DFT calculations.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 48","pages":"22912–22922 22912–22922"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Pt Nanoparticle Morphology on the Aerobic Oxidation of Ethylene Glycol to Glycolic Acid in Water\",\"authors\":\"Werner Oberhauser*, Claudio Evangelisti*, Xuan Trung Nguyen, Jonathan Filippi, Lorenzo Poggini, Laura Capozzoli, Gabriele Manca, Ella A. Kitching, Thomas J. A. Slater and Mohsen Danaie, \",\"doi\":\"10.1021/acs.inorgchem.4c0397010.1021/acs.inorgchem.4c03970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Pt nanoparticles (diameter <3 nm), generated by metal vapor synthesis and supported on a high surface area carbon, were used to catalyze the aerobic oxidation of ethylene glycol to glycolic acid (GA) in water under neutral and basic reaction conditions. Controlled heat treatment of the catalyst under a nitrogen atmosphere brought about the formation of a morphologically well-defined catalyst. A combination of atomic resolution electron microscopy, CO stripping voltammetry, and XPS analyses conducted on as-synthesized and heat-treated catalysts demonstrated the crucial role of the nanoparticles’ morphology on the stabilization of catalytically highly active Pt–OH surface species, which were key species for the Pt-catalyzed oxidation of the alcohol to the carbonyl functionality. The boosting effect of base on the catalyst’ s activity and GA selectivity has been proved experimentally (autoclave experiments). The effect of base on the nonmetal-catalyzed reaction steps (i.e., aerobic oxidation of carbonyl to acid functionality) has been proved by DFT calculations.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"63 48\",\"pages\":\"22912–22922 22912–22922\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03970\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c03970","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Effect of Pt Nanoparticle Morphology on the Aerobic Oxidation of Ethylene Glycol to Glycolic Acid in Water
Pt nanoparticles (diameter <3 nm), generated by metal vapor synthesis and supported on a high surface area carbon, were used to catalyze the aerobic oxidation of ethylene glycol to glycolic acid (GA) in water under neutral and basic reaction conditions. Controlled heat treatment of the catalyst under a nitrogen atmosphere brought about the formation of a morphologically well-defined catalyst. A combination of atomic resolution electron microscopy, CO stripping voltammetry, and XPS analyses conducted on as-synthesized and heat-treated catalysts demonstrated the crucial role of the nanoparticles’ morphology on the stabilization of catalytically highly active Pt–OH surface species, which were key species for the Pt-catalyzed oxidation of the alcohol to the carbonyl functionality. The boosting effect of base on the catalyst’ s activity and GA selectivity has been proved experimentally (autoclave experiments). The effect of base on the nonmetal-catalyzed reaction steps (i.e., aerobic oxidation of carbonyl to acid functionality) has been proved by DFT calculations.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.