基于BDS-3/INS多频紧密耦合集成的运动学测量周跳检测与修复方法

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Kai Xiao, Xiangwei Zhu, Lundong Zhang, Fuping Sun, Peiyuan Zhou, Wanli Li
{"title":"基于BDS-3/INS多频紧密耦合集成的运动学测量周跳检测与修复方法","authors":"Kai Xiao, Xiangwei Zhu, Lundong Zhang, Fuping Sun, Peiyuan Zhou, Wanli Li","doi":"10.1007/s00190-024-01896-5","DOIUrl":null,"url":null,"abstract":"<p>Carrier phase integer ambiguities must be determined for BDS-3/inertial navigation system (INS) tightly coupled (TC) integration to achieve centimetre-level positioning accuracy. However, cycle slip breaks the consistency of the integer ambiguities. Conventional multi-frequency cycle slip methods use the pseudorange; thus, requiring improvement when applied to kinematic situations. Furthermore, a concise and nonprior information-dependent model is crucial for real-time processing. In this study, an inertial-aided BDS-3 cycle slip detection and repair (I-CDR) method was developed. First, a BDS-3/INS TC model with I-CDR was created. The ionospheric delays were modelled as part of the TC states; therefore, they could be estimated and eliminated. Investigations were conducted on the effects of carrier phase noise, residual ionosphere delay, and INS-predicted position error on combined cycle slip detection (CCD) accuracy. The optimal CCDs under various frequency available configurations were determined. The effectiveness of I-CDR was demonstrated using land vehicle test data. The false alarm ratio was less than 1.0%, and the missed detection ratio was almost zero even in situations with challenging abundant 1-cycle slips in random epochs. Furthermore, the right determination ratio reached 100%. In addition, BDS-3 signal loss-recovery cases were simulated, and all cycle slips for all satellites could be repaired within 40s. I-CDR exhibits outstanding cycle slip detection and repair performance for dense 1-cycle slip and signal loss-recovery cases, demonstrating its suitability for BDS-3/INS TC integration.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"12 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycle slip detection and repair method towards multi-frequency BDS-3/INS tightly coupled integration in kinematic surveying\",\"authors\":\"Kai Xiao, Xiangwei Zhu, Lundong Zhang, Fuping Sun, Peiyuan Zhou, Wanli Li\",\"doi\":\"10.1007/s00190-024-01896-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carrier phase integer ambiguities must be determined for BDS-3/inertial navigation system (INS) tightly coupled (TC) integration to achieve centimetre-level positioning accuracy. However, cycle slip breaks the consistency of the integer ambiguities. Conventional multi-frequency cycle slip methods use the pseudorange; thus, requiring improvement when applied to kinematic situations. Furthermore, a concise and nonprior information-dependent model is crucial for real-time processing. In this study, an inertial-aided BDS-3 cycle slip detection and repair (I-CDR) method was developed. First, a BDS-3/INS TC model with I-CDR was created. The ionospheric delays were modelled as part of the TC states; therefore, they could be estimated and eliminated. Investigations were conducted on the effects of carrier phase noise, residual ionosphere delay, and INS-predicted position error on combined cycle slip detection (CCD) accuracy. The optimal CCDs under various frequency available configurations were determined. The effectiveness of I-CDR was demonstrated using land vehicle test data. The false alarm ratio was less than 1.0%, and the missed detection ratio was almost zero even in situations with challenging abundant 1-cycle slips in random epochs. Furthermore, the right determination ratio reached 100%. In addition, BDS-3 signal loss-recovery cases were simulated, and all cycle slips for all satellites could be repaired within 40s. I-CDR exhibits outstanding cycle slip detection and repair performance for dense 1-cycle slip and signal loss-recovery cases, demonstrating its suitability for BDS-3/INS TC integration.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01896-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01896-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了实现厘米级定位精度,北斗三号/惯性导航系统(INS)紧密耦合(TC)集成必须确定载波相位整数模糊度。然而,周期滑移破坏了整数模糊性的一致性。传统的多频周跳方法采用伪距;因此,在应用于运动学情况时需要改进。此外,一个简洁且非先验的信息依赖模型对于实时处理至关重要。本研究开发了一种惯性辅助的北斗三号卫星周滑检测与修复(I-CDR)方法。首先,建立了具有I-CDR的BDS-3/INS TC模型。电离层延迟被模拟为TC状态的一部分;因此,它们可以被估计和消除。研究了载波相位噪声、剩余电离层延迟和ins预测位置误差对联合周跳检测(CCD)精度的影响。确定了不同频率配置下的最佳ccd。利用陆地车辆试验数据验证了I-CDR的有效性。虚警率小于1.0%,即使在随机时期具有丰富的1周期滑动的情况下,漏检率几乎为零。测定正确率达到100%。此外,模拟了北斗三号系统的信号损失恢复情况,所有卫星的所有周期滑差都可以在40s内修复。在密集的1周滑移和信号损失恢复情况下,I-CDR表现出出色的周滑移检测和修复性能,证明了其适合BDS-3/INS TC集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycle slip detection and repair method towards multi-frequency BDS-3/INS tightly coupled integration in kinematic surveying

Carrier phase integer ambiguities must be determined for BDS-3/inertial navigation system (INS) tightly coupled (TC) integration to achieve centimetre-level positioning accuracy. However, cycle slip breaks the consistency of the integer ambiguities. Conventional multi-frequency cycle slip methods use the pseudorange; thus, requiring improvement when applied to kinematic situations. Furthermore, a concise and nonprior information-dependent model is crucial for real-time processing. In this study, an inertial-aided BDS-3 cycle slip detection and repair (I-CDR) method was developed. First, a BDS-3/INS TC model with I-CDR was created. The ionospheric delays were modelled as part of the TC states; therefore, they could be estimated and eliminated. Investigations were conducted on the effects of carrier phase noise, residual ionosphere delay, and INS-predicted position error on combined cycle slip detection (CCD) accuracy. The optimal CCDs under various frequency available configurations were determined. The effectiveness of I-CDR was demonstrated using land vehicle test data. The false alarm ratio was less than 1.0%, and the missed detection ratio was almost zero even in situations with challenging abundant 1-cycle slips in random epochs. Furthermore, the right determination ratio reached 100%. In addition, BDS-3 signal loss-recovery cases were simulated, and all cycle slips for all satellites could be repaired within 40s. I-CDR exhibits outstanding cycle slip detection and repair performance for dense 1-cycle slip and signal loss-recovery cases, demonstrating its suitability for BDS-3/INS TC integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信