选择性光驱动甲烷氧化制乙醇

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Fei Xue, Chunyang Zhang, Cheng Cheng, Xueli Yan, Feng Liu, Xiaozhi Liu, Biao Jiang, Qiuyue Zhang, Lin Sun, Huiping Peng, Wei-Hsiang Huang, Chih-Wen Pao, Zhiwei Hu, Mingshu Chen, Dong Su, Maochang Liu, Xiaoqing Huang, Yong Xu
{"title":"选择性光驱动甲烷氧化制乙醇","authors":"Fei Xue, Chunyang Zhang, Cheng Cheng, Xueli Yan, Feng Liu, Xiaozhi Liu, Biao Jiang, Qiuyue Zhang, Lin Sun, Huiping Peng, Wei-Hsiang Huang, Chih-Wen Pao, Zhiwei Hu, Mingshu Chen, Dong Su, Maochang Liu, Xiaoqing Huang, Yong Xu","doi":"10.1038/s41467-024-54835-5","DOIUrl":null,"url":null,"abstract":"<p>Methane (CH<sub>4</sub>) photocatalytic upgrading to value-added chemicals, especially C<sub>2</sub> products, is significant yet challenging due to sluggish energy/mass transfer and insufficient chemical driven-force in single photochemical process. Herein, we realize solar-driven CH<sub>4</sub> oxidation to ethanol (C<sub>2</sub>H<sub>5</sub>OH) on crystalline carbon nitride (CCN) modified with Cu<sub>9</sub>S<sub>5</sub> and Cu single atoms (Cu<sub>9</sub>S<sub>5</sub>/Cu-CCN). The integration of photothermal effect and photocatalysis overcomes CH<sub>4</sub>-to-C<sub>2</sub>H<sub>5</sub>OH conversion bottlenecks, with Cu<sub>9</sub>S<sub>5</sub> as a hotspot to convert solar-energy to heat. In-situ characterizations demonstrate that Cu single atoms play as electron acceptor for O<sub>2</sub> reduction to ·OOH/ · OH, while Cu<sub>9</sub>S<sub>5</sub> acts as hole acceptor and site for CH<sub>4</sub> adsorption, C − H activation, and C − C coupling. Theoretical calculations demonstrate that Cu<sub>9</sub>S<sub>5</sub>/Cu-CCN reduces C − C coupling energy barrier by stabilizing ·CH<sub>3</sub> and ·CH<sub>2</sub>O. Impressively, C<sub>2</sub>H<sub>5</sub>OH productivity reaches 549.7 μmol g<sup>–1</sup> h<sup>–1</sup>, with selectivity of 94.8% and apparent quantum efficiency of 0.9% (420 nm). This work provides a sustainable avenue for CH<sub>4</sub> conversion to value-added chemcials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"77 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective light-driven methane oxidation to ethanol\",\"authors\":\"Fei Xue, Chunyang Zhang, Cheng Cheng, Xueli Yan, Feng Liu, Xiaozhi Liu, Biao Jiang, Qiuyue Zhang, Lin Sun, Huiping Peng, Wei-Hsiang Huang, Chih-Wen Pao, Zhiwei Hu, Mingshu Chen, Dong Su, Maochang Liu, Xiaoqing Huang, Yong Xu\",\"doi\":\"10.1038/s41467-024-54835-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methane (CH<sub>4</sub>) photocatalytic upgrading to value-added chemicals, especially C<sub>2</sub> products, is significant yet challenging due to sluggish energy/mass transfer and insufficient chemical driven-force in single photochemical process. Herein, we realize solar-driven CH<sub>4</sub> oxidation to ethanol (C<sub>2</sub>H<sub>5</sub>OH) on crystalline carbon nitride (CCN) modified with Cu<sub>9</sub>S<sub>5</sub> and Cu single atoms (Cu<sub>9</sub>S<sub>5</sub>/Cu-CCN). The integration of photothermal effect and photocatalysis overcomes CH<sub>4</sub>-to-C<sub>2</sub>H<sub>5</sub>OH conversion bottlenecks, with Cu<sub>9</sub>S<sub>5</sub> as a hotspot to convert solar-energy to heat. In-situ characterizations demonstrate that Cu single atoms play as electron acceptor for O<sub>2</sub> reduction to ·OOH/ · OH, while Cu<sub>9</sub>S<sub>5</sub> acts as hole acceptor and site for CH<sub>4</sub> adsorption, C − H activation, and C − C coupling. Theoretical calculations demonstrate that Cu<sub>9</sub>S<sub>5</sub>/Cu-CCN reduces C − C coupling energy barrier by stabilizing ·CH<sub>3</sub> and ·CH<sub>2</sub>O. Impressively, C<sub>2</sub>H<sub>5</sub>OH productivity reaches 549.7 μmol g<sup>–1</sup> h<sup>–1</sup>, with selectivity of 94.8% and apparent quantum efficiency of 0.9% (420 nm). This work provides a sustainable avenue for CH<sub>4</sub> conversion to value-added chemcials.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54835-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54835-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于单一光化学过程中能量/质传递缓慢,化学驱动力不足,甲烷光催化转化为附加值化学品,特别是C2产品意义重大,但具有挑战性。在此,我们在Cu9S5和Cu单原子修饰的晶体氮化碳(CCN) (Cu9S5/Cu-CCN)上实现了太阳能驱动的CH4氧化制乙醇(C2H5OH)。光热效应和光催化的结合克服了ch4到c2h5oh转化的瓶颈,以Cu9S5为热点将太阳能转化为热能。原位表征表明,Cu单原子是O2还原为·OOH/·OH的电子受体,而Cu9S5是CH4吸附、C−H活化和C−C耦合的空穴受体和位点。理论计算表明Cu9S5/Cu-CCN通过稳定·CH3和·CH2O降低了C -C耦合能垒。C2H5OH产率达到549.7 μmol g-1 h-1,选择性为94.8%,表观量子效率为0.9% (420 nm)。这项工作为CH4转化为增值化学品提供了一条可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selective light-driven methane oxidation to ethanol

Selective light-driven methane oxidation to ethanol

Methane (CH4) photocatalytic upgrading to value-added chemicals, especially C2 products, is significant yet challenging due to sluggish energy/mass transfer and insufficient chemical driven-force in single photochemical process. Herein, we realize solar-driven CH4 oxidation to ethanol (C2H5OH) on crystalline carbon nitride (CCN) modified with Cu9S5 and Cu single atoms (Cu9S5/Cu-CCN). The integration of photothermal effect and photocatalysis overcomes CH4-to-C2H5OH conversion bottlenecks, with Cu9S5 as a hotspot to convert solar-energy to heat. In-situ characterizations demonstrate that Cu single atoms play as electron acceptor for O2 reduction to ·OOH/ · OH, while Cu9S5 acts as hole acceptor and site for CH4 adsorption, C − H activation, and C − C coupling. Theoretical calculations demonstrate that Cu9S5/Cu-CCN reduces C − C coupling energy barrier by stabilizing ·CH3 and ·CH2O. Impressively, C2H5OH productivity reaches 549.7 μmol g–1 h–1, with selectivity of 94.8% and apparent quantum efficiency of 0.9% (420 nm). This work provides a sustainable avenue for CH4 conversion to value-added chemcials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信