Le Tracy Yu, Mark A B Kreutzberger, Thi H Bui, Maria C Hancu, Adam C Farsheed, Edward H Egelman, Jeffrey D Hartgerink
{"title":"超越三螺旋结构的胶原样肽层次组装空间的探索。","authors":"Le Tracy Yu, Mark A B Kreutzberger, Thi H Bui, Maria C Hancu, Adam C Farsheed, Edward H Egelman, Jeffrey D Hartgerink","doi":"10.1038/s41467-024-54560-z","DOIUrl":null,"url":null,"abstract":"<p><p>The de novo design of self-assembling peptides has garnered significant attention in scientific research. While alpha-helical assemblies have been extensively studied, exploration of polyproline type II helices, such as those found in collagen, remains relatively limited. In this study, we focus on understanding the sequence-structure relationship in hierarchical assemblies of collagen-like peptides, using defense collagen Surfactant Protein A as a model. By dissecting the sequence derived from Surfactant Protein A and synthesizing short collagen-like peptides, we successfully construct a discrete bundle of hollow triple helices. Amino acid substitution studies pinpoint hydrophobic and charged residues that are critical for oligomer formation. These insights guide the de novo design of collagen-like peptides, resulting in the formation of diverse quaternary structures, including discrete and heterogenous bundled oligomers, two-dimensional nanosheets, and pH-responsive nanoribbons. Our study represents a significant advancement in the understanding and harnessing of collagen higher-order assemblies beyond the triple helix.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"10385"},"PeriodicalIF":15.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606958/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploration of the hierarchical assembly space of collagen-like peptides beyond the triple helix.\",\"authors\":\"Le Tracy Yu, Mark A B Kreutzberger, Thi H Bui, Maria C Hancu, Adam C Farsheed, Edward H Egelman, Jeffrey D Hartgerink\",\"doi\":\"10.1038/s41467-024-54560-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The de novo design of self-assembling peptides has garnered significant attention in scientific research. While alpha-helical assemblies have been extensively studied, exploration of polyproline type II helices, such as those found in collagen, remains relatively limited. In this study, we focus on understanding the sequence-structure relationship in hierarchical assemblies of collagen-like peptides, using defense collagen Surfactant Protein A as a model. By dissecting the sequence derived from Surfactant Protein A and synthesizing short collagen-like peptides, we successfully construct a discrete bundle of hollow triple helices. Amino acid substitution studies pinpoint hydrophobic and charged residues that are critical for oligomer formation. These insights guide the de novo design of collagen-like peptides, resulting in the formation of diverse quaternary structures, including discrete and heterogenous bundled oligomers, two-dimensional nanosheets, and pH-responsive nanoribbons. Our study represents a significant advancement in the understanding and harnessing of collagen higher-order assemblies beyond the triple helix.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"10385\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606958/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54560-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54560-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Exploration of the hierarchical assembly space of collagen-like peptides beyond the triple helix.
The de novo design of self-assembling peptides has garnered significant attention in scientific research. While alpha-helical assemblies have been extensively studied, exploration of polyproline type II helices, such as those found in collagen, remains relatively limited. In this study, we focus on understanding the sequence-structure relationship in hierarchical assemblies of collagen-like peptides, using defense collagen Surfactant Protein A as a model. By dissecting the sequence derived from Surfactant Protein A and synthesizing short collagen-like peptides, we successfully construct a discrete bundle of hollow triple helices. Amino acid substitution studies pinpoint hydrophobic and charged residues that are critical for oligomer formation. These insights guide the de novo design of collagen-like peptides, resulting in the formation of diverse quaternary structures, including discrete and heterogenous bundled oligomers, two-dimensional nanosheets, and pH-responsive nanoribbons. Our study represents a significant advancement in the understanding and harnessing of collagen higher-order assemblies beyond the triple helix.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.