Ghada M Salum, Nesma M Elaraby, Hoda A Ahmed, Mai Abd El Meguid, Basma E Fotouh, Muhammed Ashraf, Yasmine Elhusseny, Reham M Dawood
{"title":"埃及女性乳腺癌中肿瘤发生相关mirna的评估:一项回顾性的探索性分析。","authors":"Ghada M Salum, Nesma M Elaraby, Hoda A Ahmed, Mai Abd El Meguid, Basma E Fotouh, Muhammed Ashraf, Yasmine Elhusseny, Reham M Dawood","doi":"10.1038/s41598-024-68758-0","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is a leading cause of global female cancer-related deaths, despite treatment advancements. A growing focus on investigating microRNA-based therapeutics and their role in BC progression. A computational analysis was performed to identify the potential miRNA-mRNA network involved in the BC pathogenesis and assist with the treatment strategy. Then, the expression levels of five circulatory miRNAs (miR-200a-3p, miR-124-3p, miR-205-5p, miR-15a-5p, and miR-155-5p) were assessed by using qRT-PCR in 75 BC patients (early-stage: n = 26 and late-stage: n = 49) and 20 healthy controls. The analysis included various (a) stages (early and late) and (b) receptor statuses (ER + ve & HER2 -ve), (HER + ve & ER -ve), and triple-negative (TNBC). In-silico analysis suggested that STAT3 serves as an efficacy biomarker suppressed by miR-124-3p. Additionally, the miR-155-5p showed the ability to activate CTNNB1 which acts as a biomarker for BC progression, to inhibit DNA repair genes (ARID2, and WEE1), and the transcriptional factor gene (TCF4). MiR-205-5p and miR-16 suppressed VEGFA expression, a survival factor for BC. MiR-200a-3p, miR-205-5p, and miR-124-3p showed downregulation in the serum of BC patients compared to controls. The ROC analysis of those miRNAs demonstrated their significant diagnostic accuracy for identifying BC patients. Additionally, miR-155-5p exhibited a significant upregulation in TNBC and can be used as an indicative marker for TNBC. This study holds significant promise for the development of noninvasive miRNA biomarkers with potential clinical applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"29757"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of tumorigenesis-related miRNAs in breast cancer in Egyptian women: a retrospective, exploratory analysis.\",\"authors\":\"Ghada M Salum, Nesma M Elaraby, Hoda A Ahmed, Mai Abd El Meguid, Basma E Fotouh, Muhammed Ashraf, Yasmine Elhusseny, Reham M Dawood\",\"doi\":\"10.1038/s41598-024-68758-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer (BC) is a leading cause of global female cancer-related deaths, despite treatment advancements. A growing focus on investigating microRNA-based therapeutics and their role in BC progression. A computational analysis was performed to identify the potential miRNA-mRNA network involved in the BC pathogenesis and assist with the treatment strategy. Then, the expression levels of five circulatory miRNAs (miR-200a-3p, miR-124-3p, miR-205-5p, miR-15a-5p, and miR-155-5p) were assessed by using qRT-PCR in 75 BC patients (early-stage: n = 26 and late-stage: n = 49) and 20 healthy controls. The analysis included various (a) stages (early and late) and (b) receptor statuses (ER + ve & HER2 -ve), (HER + ve & ER -ve), and triple-negative (TNBC). In-silico analysis suggested that STAT3 serves as an efficacy biomarker suppressed by miR-124-3p. Additionally, the miR-155-5p showed the ability to activate CTNNB1 which acts as a biomarker for BC progression, to inhibit DNA repair genes (ARID2, and WEE1), and the transcriptional factor gene (TCF4). MiR-205-5p and miR-16 suppressed VEGFA expression, a survival factor for BC. MiR-200a-3p, miR-205-5p, and miR-124-3p showed downregulation in the serum of BC patients compared to controls. The ROC analysis of those miRNAs demonstrated their significant diagnostic accuracy for identifying BC patients. Additionally, miR-155-5p exhibited a significant upregulation in TNBC and can be used as an indicative marker for TNBC. This study holds significant promise for the development of noninvasive miRNA biomarkers with potential clinical applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"29757\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-68758-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-68758-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evaluation of tumorigenesis-related miRNAs in breast cancer in Egyptian women: a retrospective, exploratory analysis.
Breast cancer (BC) is a leading cause of global female cancer-related deaths, despite treatment advancements. A growing focus on investigating microRNA-based therapeutics and their role in BC progression. A computational analysis was performed to identify the potential miRNA-mRNA network involved in the BC pathogenesis and assist with the treatment strategy. Then, the expression levels of five circulatory miRNAs (miR-200a-3p, miR-124-3p, miR-205-5p, miR-15a-5p, and miR-155-5p) were assessed by using qRT-PCR in 75 BC patients (early-stage: n = 26 and late-stage: n = 49) and 20 healthy controls. The analysis included various (a) stages (early and late) and (b) receptor statuses (ER + ve & HER2 -ve), (HER + ve & ER -ve), and triple-negative (TNBC). In-silico analysis suggested that STAT3 serves as an efficacy biomarker suppressed by miR-124-3p. Additionally, the miR-155-5p showed the ability to activate CTNNB1 which acts as a biomarker for BC progression, to inhibit DNA repair genes (ARID2, and WEE1), and the transcriptional factor gene (TCF4). MiR-205-5p and miR-16 suppressed VEGFA expression, a survival factor for BC. MiR-200a-3p, miR-205-5p, and miR-124-3p showed downregulation in the serum of BC patients compared to controls. The ROC analysis of those miRNAs demonstrated their significant diagnostic accuracy for identifying BC patients. Additionally, miR-155-5p exhibited a significant upregulation in TNBC and can be used as an indicative marker for TNBC. This study holds significant promise for the development of noninvasive miRNA biomarkers with potential clinical applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.