{"title":"VRP-034的毒性动力学分析:评估其减轻多粘菌素b相关肾毒性的潜力。","authors":"Kamlesh Vishwakarma, Anmol Bisht, Parveen Kumar, Satish Kumar, Jawed Akhter, Anurag Payasi, Saransh Chaudhary, Anmol Aggarwal","doi":"10.1016/j.ijantimicag.2024.107393","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed the nephrotoxicity and toxicokinetic profile of VRP-034 [a novel formulation of polymyxin B (PMB)] compared with marketed PMB over a 7-day repeat-dose regimen. Three objectives were pursued: evaluating PMB pharmacokinetics in both groups, alongside assessing the impact of VRP-034 on mitigating PMB-associated kidney injury; analysing the reversibility of kidney injury; and validating novel kidney injury biomarkers against traditional markers using histopathological scoring. Sixty-eight Sprague-Dawley rats were divided into three groups: 30 in each of the marketed PMB and VRP-034 groups, and eight in the control group. Rats received drugs at 6 mg/kg subcutaneously every 8 h (human equivalent dose ∼3 mg/kg/day). Toxicokinetic evaluations were conducted on selected animals on days 1, 2, 4, and 7 (after 3rd, 6th, 12th and 21st dose), while the remaining animals were observed for an additional 7 days without treatment. Samples were collected up to 12 h post-administration, followed by necropsy and histopathological examination. Plasma PMB concentrations were quantified; and kidney injury biomarkers, oxidative stress and anti-inflammatory markers were evaluated. Receiver operating characteristic curve analysis was performed to validate kidney injury biomarkers against histopathological grading. Similar plasma PMB concentrations and pharmacokinetic parameters were found in the two treatment groups. However, the VRP-034 group exhibited significantly lower nephrotoxicity, with reduced levels of kidney injury biomarkers, and diminished oxidative stress and inflammation levels compared with the marketed PMB group. Histopathological examination confirmed reduced renal damage in the VRP-034 group. Novel kidney injury biomarkers demonstrated superior sensitivity, specificity and early detection capability over traditional markers. In conclusion, VRP-034 demonstrated reduced nephrotoxicity compared with marketed PMB, suggesting its potential as a safer alternative.</p>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":" ","pages":"107393"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicokinetic profiling of VRP-034: Evaluating its potential in mitigating polymyxin-B-associated nephrotoxicity.\",\"authors\":\"Kamlesh Vishwakarma, Anmol Bisht, Parveen Kumar, Satish Kumar, Jawed Akhter, Anurag Payasi, Saransh Chaudhary, Anmol Aggarwal\",\"doi\":\"10.1016/j.ijantimicag.2024.107393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study assessed the nephrotoxicity and toxicokinetic profile of VRP-034 [a novel formulation of polymyxin B (PMB)] compared with marketed PMB over a 7-day repeat-dose regimen. Three objectives were pursued: evaluating PMB pharmacokinetics in both groups, alongside assessing the impact of VRP-034 on mitigating PMB-associated kidney injury; analysing the reversibility of kidney injury; and validating novel kidney injury biomarkers against traditional markers using histopathological scoring. Sixty-eight Sprague-Dawley rats were divided into three groups: 30 in each of the marketed PMB and VRP-034 groups, and eight in the control group. Rats received drugs at 6 mg/kg subcutaneously every 8 h (human equivalent dose ∼3 mg/kg/day). Toxicokinetic evaluations were conducted on selected animals on days 1, 2, 4, and 7 (after 3rd, 6th, 12th and 21st dose), while the remaining animals were observed for an additional 7 days without treatment. Samples were collected up to 12 h post-administration, followed by necropsy and histopathological examination. Plasma PMB concentrations were quantified; and kidney injury biomarkers, oxidative stress and anti-inflammatory markers were evaluated. Receiver operating characteristic curve analysis was performed to validate kidney injury biomarkers against histopathological grading. Similar plasma PMB concentrations and pharmacokinetic parameters were found in the two treatment groups. However, the VRP-034 group exhibited significantly lower nephrotoxicity, with reduced levels of kidney injury biomarkers, and diminished oxidative stress and inflammation levels compared with the marketed PMB group. Histopathological examination confirmed reduced renal damage in the VRP-034 group. Novel kidney injury biomarkers demonstrated superior sensitivity, specificity and early detection capability over traditional markers. In conclusion, VRP-034 demonstrated reduced nephrotoxicity compared with marketed PMB, suggesting its potential as a safer alternative.</p>\",\"PeriodicalId\":13818,\"journal\":{\"name\":\"International Journal of Antimicrobial Agents\",\"volume\":\" \",\"pages\":\"107393\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antimicrobial Agents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijantimicag.2024.107393\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijantimicag.2024.107393","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Toxicokinetic profiling of VRP-034: Evaluating its potential in mitigating polymyxin-B-associated nephrotoxicity.
This study assessed the nephrotoxicity and toxicokinetic profile of VRP-034 [a novel formulation of polymyxin B (PMB)] compared with marketed PMB over a 7-day repeat-dose regimen. Three objectives were pursued: evaluating PMB pharmacokinetics in both groups, alongside assessing the impact of VRP-034 on mitigating PMB-associated kidney injury; analysing the reversibility of kidney injury; and validating novel kidney injury biomarkers against traditional markers using histopathological scoring. Sixty-eight Sprague-Dawley rats were divided into three groups: 30 in each of the marketed PMB and VRP-034 groups, and eight in the control group. Rats received drugs at 6 mg/kg subcutaneously every 8 h (human equivalent dose ∼3 mg/kg/day). Toxicokinetic evaluations were conducted on selected animals on days 1, 2, 4, and 7 (after 3rd, 6th, 12th and 21st dose), while the remaining animals were observed for an additional 7 days without treatment. Samples were collected up to 12 h post-administration, followed by necropsy and histopathological examination. Plasma PMB concentrations were quantified; and kidney injury biomarkers, oxidative stress and anti-inflammatory markers were evaluated. Receiver operating characteristic curve analysis was performed to validate kidney injury biomarkers against histopathological grading. Similar plasma PMB concentrations and pharmacokinetic parameters were found in the two treatment groups. However, the VRP-034 group exhibited significantly lower nephrotoxicity, with reduced levels of kidney injury biomarkers, and diminished oxidative stress and inflammation levels compared with the marketed PMB group. Histopathological examination confirmed reduced renal damage in the VRP-034 group. Novel kidney injury biomarkers demonstrated superior sensitivity, specificity and early detection capability over traditional markers. In conclusion, VRP-034 demonstrated reduced nephrotoxicity compared with marketed PMB, suggesting its potential as a safer alternative.
期刊介绍:
The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.