{"title":"产前雄激素化多囊卵巢综合征大鼠模型在晚年的糖耐量和胰岛素抵抗受损。","authors":"Mahbanoo Farhadi-Azar, Mahsa Noroozzadeh, Maryam Mousavi, Marzieh Saei Ghare Naz, Fahimeh Ramezani Tehrani","doi":"10.1113/EP091912","DOIUrl":null,"url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS), one of the most common endocrine disorders in reproductive-aged women, is associated with metabolic disturbances. The present study aimed to examine changes in body weight (BW) and glucose and insulin tolerance in a prenatally-androgenized (PNA) rat model of PCOS compared to control with increasing age. Pregnant rats in the experimental group were subcutaneously injected with 5 mg of free testosterone on the 20th day of pregnancy, while the control group received the solvent. Female offspring of both groups, PNA rats (rat model of PCOS) and control, were examined in terms of changes in BW, glucose and insulin tolerance at 3, 6, 12 and 20 months of age. BW at birth (6.53 ± 0.89 vs. 5.60 ± 1.18 g; P = 0.038), 15 (25 ± 1.15 vs. 22.36 ± 3.98 g; P = 0.019) and 30 (59.37 ± 10.19 vs.49.9 ± 9.39 g; P = 0.022) days of age was significantly increased in the rat model of PCOS compared to control, but no significant differences were observed in BW of the rat model of PCOS compared to control at 60 (P = 0.155) and 75 (P = 0.932) days or at 3 (P = 0.239), 6 (P = 0.782), 12 (P = 0.755) and 20 (P = 0.092) months of age. Rat model of PCOS showed impaired glucose tolerance (IGT) at 3 months of age (P = 0.020) and insulin resistance (IR) with increasing age (3-20 months of age) compared to control. Increased BW before puberty, IGT at 3 months of age and IR with increasing age were observed in our rat model of PCOS. This rat model may contribute to a better understanding of underlying mechanisms of changes in BW, IGT and IR in future studies.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired glucose tolerance and insulin resistance in a prenatally-androgenized rat model of polycystic ovary syndrome in later life.\",\"authors\":\"Mahbanoo Farhadi-Azar, Mahsa Noroozzadeh, Maryam Mousavi, Marzieh Saei Ghare Naz, Fahimeh Ramezani Tehrani\",\"doi\":\"10.1113/EP091912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polycystic ovary syndrome (PCOS), one of the most common endocrine disorders in reproductive-aged women, is associated with metabolic disturbances. The present study aimed to examine changes in body weight (BW) and glucose and insulin tolerance in a prenatally-androgenized (PNA) rat model of PCOS compared to control with increasing age. Pregnant rats in the experimental group were subcutaneously injected with 5 mg of free testosterone on the 20th day of pregnancy, while the control group received the solvent. Female offspring of both groups, PNA rats (rat model of PCOS) and control, were examined in terms of changes in BW, glucose and insulin tolerance at 3, 6, 12 and 20 months of age. BW at birth (6.53 ± 0.89 vs. 5.60 ± 1.18 g; P = 0.038), 15 (25 ± 1.15 vs. 22.36 ± 3.98 g; P = 0.019) and 30 (59.37 ± 10.19 vs.49.9 ± 9.39 g; P = 0.022) days of age was significantly increased in the rat model of PCOS compared to control, but no significant differences were observed in BW of the rat model of PCOS compared to control at 60 (P = 0.155) and 75 (P = 0.932) days or at 3 (P = 0.239), 6 (P = 0.782), 12 (P = 0.755) and 20 (P = 0.092) months of age. Rat model of PCOS showed impaired glucose tolerance (IGT) at 3 months of age (P = 0.020) and insulin resistance (IR) with increasing age (3-20 months of age) compared to control. Increased BW before puberty, IGT at 3 months of age and IR with increasing age were observed in our rat model of PCOS. This rat model may contribute to a better understanding of underlying mechanisms of changes in BW, IGT and IR in future studies.</p>\",\"PeriodicalId\":12092,\"journal\":{\"name\":\"Experimental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/EP091912\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP091912","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Impaired glucose tolerance and insulin resistance in a prenatally-androgenized rat model of polycystic ovary syndrome in later life.
Polycystic ovary syndrome (PCOS), one of the most common endocrine disorders in reproductive-aged women, is associated with metabolic disturbances. The present study aimed to examine changes in body weight (BW) and glucose and insulin tolerance in a prenatally-androgenized (PNA) rat model of PCOS compared to control with increasing age. Pregnant rats in the experimental group were subcutaneously injected with 5 mg of free testosterone on the 20th day of pregnancy, while the control group received the solvent. Female offspring of both groups, PNA rats (rat model of PCOS) and control, were examined in terms of changes in BW, glucose and insulin tolerance at 3, 6, 12 and 20 months of age. BW at birth (6.53 ± 0.89 vs. 5.60 ± 1.18 g; P = 0.038), 15 (25 ± 1.15 vs. 22.36 ± 3.98 g; P = 0.019) and 30 (59.37 ± 10.19 vs.49.9 ± 9.39 g; P = 0.022) days of age was significantly increased in the rat model of PCOS compared to control, but no significant differences were observed in BW of the rat model of PCOS compared to control at 60 (P = 0.155) and 75 (P = 0.932) days or at 3 (P = 0.239), 6 (P = 0.782), 12 (P = 0.755) and 20 (P = 0.092) months of age. Rat model of PCOS showed impaired glucose tolerance (IGT) at 3 months of age (P = 0.020) and insulin resistance (IR) with increasing age (3-20 months of age) compared to control. Increased BW before puberty, IGT at 3 months of age and IR with increasing age were observed in our rat model of PCOS. This rat model may contribute to a better understanding of underlying mechanisms of changes in BW, IGT and IR in future studies.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.