机械加工制备的纤维素纳米纤维流变阻抗行为

IF 4.9 2区 工程技术 Q1 MATERIALS SCIENCE, PAPER & WOOD
Yoshifumi Yamagata, Yuichi Takasaki, Keisuke Miyamoto
{"title":"机械加工制备的纤维素纳米纤维流变阻抗行为","authors":"Yoshifumi Yamagata,&nbsp;Yuichi Takasaki,&nbsp;Keisuke Miyamoto","doi":"10.1007/s10570-024-06242-8","DOIUrl":null,"url":null,"abstract":"<div><p>CNFs are one of the renewable and the sustainable resources with low environmental impact and have various characteristics such as increased strength and weight reduction when added to resins. Since CNFs are one of the new materials that can fulfill the goals of the Sustainable Development Goals (hereafter abbreviated as SDGs), many researchers have been studying the nano-fibrillation of wood fibers. From the viewpoint of SDGs, it is necessary to avoid using a large amount of chemical agents and consuming a large amount of energy for the production of CNFs. To realize these requirements, it is important to find a way to industrially utilize CNFs containing insufficiently nanosized fibers, and for these purposes, it is essential to evaluate the physical properties of these CNFs from multiple perspectives. Cellulose fibers are intrinsically insulating materials, but how their electrochemical properties are changed by nano-fibrillization has been little studied. Therefore, we decided to clarify the relationship between the size of CNFs and the electrochemical impedance properties of the CNF suspensions containing un-fibrillated fibers, which were prepared by a wet refinement system. The fiber diameter remained constant as the number of mechanical treatments (hereafter referred to as the “number of collisions”) increased. On the other hand, the cumulative medium volume diameter, D<sub>50</sub>, defined as the apparent fiber length (hereafter referred to as the “fiber length”, in microns), significantly decreases with the increasing number of collisions. The rheo-impedance |Z| of the CNF suspension remained nearly constant in the intermediate frequency range of 10<sup>3</sup>–10<sup>6</sup> Hz, even if the internal structure of the system was deformed by the increasing shear rate. This means that the electrochemical properties of the CNFs are independent of the changes in the macroscopic aggregation structure. Furthermore, the internal resistance <i>R</i><sub>1</sub> calculated from the impedance |Z| characteristics (Nyquist plot) became decreased with the increasing number of collisions, indicating a proportional relationship between the resistance <i>R</i><sub>1</sub> and the CNF fiber length, D<sub>50</sub>. This suggests that <i>R</i><sub>1</sub> related to the resistance caused by the electrolyte in the suspensions or the protons dissociated by the hydration of the hydroxyl groups of the cellulose molecule as they move across the gaps between the microfibrils. Based on these results, it appears that the electrochemical properties of the CNF suspensions are independent of the changes in the macroscopic aggregation structure and simply depend on the fiber length, in other words, the electrochemical properties are a useful method for indirectly evaluating the fiber length of the CNFs.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":"31 18","pages":"10771 - 10784"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-024-06242-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Rheo-impedance behavior of cellulose nanofibers produced by mechanical processing\",\"authors\":\"Yoshifumi Yamagata,&nbsp;Yuichi Takasaki,&nbsp;Keisuke Miyamoto\",\"doi\":\"10.1007/s10570-024-06242-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CNFs are one of the renewable and the sustainable resources with low environmental impact and have various characteristics such as increased strength and weight reduction when added to resins. Since CNFs are one of the new materials that can fulfill the goals of the Sustainable Development Goals (hereafter abbreviated as SDGs), many researchers have been studying the nano-fibrillation of wood fibers. From the viewpoint of SDGs, it is necessary to avoid using a large amount of chemical agents and consuming a large amount of energy for the production of CNFs. To realize these requirements, it is important to find a way to industrially utilize CNFs containing insufficiently nanosized fibers, and for these purposes, it is essential to evaluate the physical properties of these CNFs from multiple perspectives. Cellulose fibers are intrinsically insulating materials, but how their electrochemical properties are changed by nano-fibrillization has been little studied. Therefore, we decided to clarify the relationship between the size of CNFs and the electrochemical impedance properties of the CNF suspensions containing un-fibrillated fibers, which were prepared by a wet refinement system. The fiber diameter remained constant as the number of mechanical treatments (hereafter referred to as the “number of collisions”) increased. On the other hand, the cumulative medium volume diameter, D<sub>50</sub>, defined as the apparent fiber length (hereafter referred to as the “fiber length”, in microns), significantly decreases with the increasing number of collisions. The rheo-impedance |Z| of the CNF suspension remained nearly constant in the intermediate frequency range of 10<sup>3</sup>–10<sup>6</sup> Hz, even if the internal structure of the system was deformed by the increasing shear rate. This means that the electrochemical properties of the CNFs are independent of the changes in the macroscopic aggregation structure. Furthermore, the internal resistance <i>R</i><sub>1</sub> calculated from the impedance |Z| characteristics (Nyquist plot) became decreased with the increasing number of collisions, indicating a proportional relationship between the resistance <i>R</i><sub>1</sub> and the CNF fiber length, D<sub>50</sub>. This suggests that <i>R</i><sub>1</sub> related to the resistance caused by the electrolyte in the suspensions or the protons dissociated by the hydration of the hydroxyl groups of the cellulose molecule as they move across the gaps between the microfibrils. Based on these results, it appears that the electrochemical properties of the CNF suspensions are independent of the changes in the macroscopic aggregation structure and simply depend on the fiber length, in other words, the electrochemical properties are a useful method for indirectly evaluating the fiber length of the CNFs.</p></div>\",\"PeriodicalId\":511,\"journal\":{\"name\":\"Cellulose\",\"volume\":\"31 18\",\"pages\":\"10771 - 10784\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10570-024-06242-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellulose\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10570-024-06242-8\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06242-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0

摘要

CNFs是一种低环境影响的可再生和可持续资源,添加到树脂中具有增强强度和减轻重量等特点。由于CNFs是实现可持续发展目标(Sustainable Development goals,以下简称SDGs)的新材料之一,许多研究者一直在研究木质纤维的纳米纤颤。从可持续发展目标的角度来看,CNFs的生产需要避免使用大量的化学试剂和消耗大量的能源。为了实现这些要求,找到一种方法来工业化利用含有纳米纤维不足的cnf是很重要的,为此,从多个角度评估这些cnf的物理性质是必要的。纤维素纤维本质上是绝缘材料,但纳米纤化如何改变其电化学性能的研究很少。因此,我们决定澄清CNF的尺寸与含有未纤化纤维的CNF悬浮液的电化学阻抗特性之间的关系,这些悬浮液是通过湿法精制系统制备的。随着力学处理次数(以下简称“碰撞次数”)的增加,纤维直径保持不变。另一方面,累积介质体积直径D50,定义为表观光纤长度(以下简称“光纤长度”,单位为微米),随着碰撞次数的增加而显著减小。在103 ~ 106 Hz的中频范围内,CNF悬架的流变阻抗|Z|基本保持不变,即使系统内部结构因剪切速率的增加而发生变形。这意味着CNFs的电化学性能与宏观聚集结构的变化无关。此外,由阻抗|Z|特性计算得到的内阻R1 (Nyquist图)随着碰撞次数的增加而减小,表明电阻R1与CNF光纤长度D50成正比关系。这表明R1与悬浮液中的电解质或纤维素分子羟基水合作用解离的质子在微原纤维之间的间隙中移动所引起的阻力有关。基于这些结果,CNF悬浮液的电化学性能与宏观聚集结构的变化无关,而仅仅取决于纤维的长度,换句话说,电化学性能是间接评价CNF纤维长度的有用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheo-impedance behavior of cellulose nanofibers produced by mechanical processing

CNFs are one of the renewable and the sustainable resources with low environmental impact and have various characteristics such as increased strength and weight reduction when added to resins. Since CNFs are one of the new materials that can fulfill the goals of the Sustainable Development Goals (hereafter abbreviated as SDGs), many researchers have been studying the nano-fibrillation of wood fibers. From the viewpoint of SDGs, it is necessary to avoid using a large amount of chemical agents and consuming a large amount of energy for the production of CNFs. To realize these requirements, it is important to find a way to industrially utilize CNFs containing insufficiently nanosized fibers, and for these purposes, it is essential to evaluate the physical properties of these CNFs from multiple perspectives. Cellulose fibers are intrinsically insulating materials, but how their electrochemical properties are changed by nano-fibrillization has been little studied. Therefore, we decided to clarify the relationship between the size of CNFs and the electrochemical impedance properties of the CNF suspensions containing un-fibrillated fibers, which were prepared by a wet refinement system. The fiber diameter remained constant as the number of mechanical treatments (hereafter referred to as the “number of collisions”) increased. On the other hand, the cumulative medium volume diameter, D50, defined as the apparent fiber length (hereafter referred to as the “fiber length”, in microns), significantly decreases with the increasing number of collisions. The rheo-impedance |Z| of the CNF suspension remained nearly constant in the intermediate frequency range of 103–106 Hz, even if the internal structure of the system was deformed by the increasing shear rate. This means that the electrochemical properties of the CNFs are independent of the changes in the macroscopic aggregation structure. Furthermore, the internal resistance R1 calculated from the impedance |Z| characteristics (Nyquist plot) became decreased with the increasing number of collisions, indicating a proportional relationship between the resistance R1 and the CNF fiber length, D50. This suggests that R1 related to the resistance caused by the electrolyte in the suspensions or the protons dissociated by the hydration of the hydroxyl groups of the cellulose molecule as they move across the gaps between the microfibrils. Based on these results, it appears that the electrochemical properties of the CNF suspensions are independent of the changes in the macroscopic aggregation structure and simply depend on the fiber length, in other words, the electrochemical properties are a useful method for indirectly evaluating the fiber length of the CNFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellulose
Cellulose 工程技术-材料科学:纺织
CiteScore
10.10
自引率
10.50%
发文量
580
审稿时长
3-8 weeks
期刊介绍: Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信