协同铁增强气凝胶和过氧乙酸降解新出现的有机污染物

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Lili Jin, Tong Li, Xiaoya Fang, Zhao Xue, Hui Huang, Hongqiang Ren
{"title":"协同铁增强气凝胶和过氧乙酸降解新出现的有机污染物","authors":"Lili Jin, Tong Li, Xiaoya Fang, Zhao Xue, Hui Huang, Hongqiang Ren","doi":"10.1038/s41545-024-00415-5","DOIUrl":null,"url":null,"abstract":"In response to the urgent need for efficient degradation of emerging organic contaminants, this study has developed a novel catalytic system based on an original Fe-doped aerogel catalyst (FeCAS) and its carbonization-enhanced variant (FeCAS-400), designed to improve the activation performance of peracetic acid (PAA). The FeCAS/PAA achieves a remarkable 96.1% degradation of sulfamethoxazole (SMX) without external energy input, while the FeCAS-400/PAA further elevates the SMX removal rate to 98.4% (kobs = 0.326 min−¹) and demonstrates effectiveness across a broad pH range of 3–11. Theoretical calculations reveal that carbonization enhances electron transfer between iron–carbon substrates, which contributes to improved catalytic performance. The system also exhibits versatility in removing a wide range of prevalent contaminants and proves effective in real water matrices. This synergistic approach, combining aerogels with metal–carbon electron transfer, holds promise for an extension to other advanced oxidation processes, contributing to the assurance of water quality safety and sustainability.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-14"},"PeriodicalIF":10.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00415-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergistic iron enhanced aerogel and peracetic acid for degradation of emerging organic contaminants\",\"authors\":\"Lili Jin, Tong Li, Xiaoya Fang, Zhao Xue, Hui Huang, Hongqiang Ren\",\"doi\":\"10.1038/s41545-024-00415-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the urgent need for efficient degradation of emerging organic contaminants, this study has developed a novel catalytic system based on an original Fe-doped aerogel catalyst (FeCAS) and its carbonization-enhanced variant (FeCAS-400), designed to improve the activation performance of peracetic acid (PAA). The FeCAS/PAA achieves a remarkable 96.1% degradation of sulfamethoxazole (SMX) without external energy input, while the FeCAS-400/PAA further elevates the SMX removal rate to 98.4% (kobs = 0.326 min−¹) and demonstrates effectiveness across a broad pH range of 3–11. Theoretical calculations reveal that carbonization enhances electron transfer between iron–carbon substrates, which contributes to improved catalytic performance. The system also exhibits versatility in removing a wide range of prevalent contaminants and proves effective in real water matrices. This synergistic approach, combining aerogels with metal–carbon electron transfer, holds promise for an extension to other advanced oxidation processes, contributing to the assurance of water quality safety and sustainability.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00415-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00415-5\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00415-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对新兴有机污染物高效降解的迫切需求,本研究基于原fe掺杂气凝胶催化剂(FeCAS)及其碳化增强变体(FeCAS-400)开发了一种新型催化体系,旨在提高过氧乙酸(PAA)的活化性能。FeCAS/PAA在没有外部能量输入的情况下对磺胺甲恶唑(SMX)的去除率达到96.1%,而FeCAS-400/PAA进一步将SMX的去除率提高到98.4% (kobs = 0.326 min−¹),并在3-11的宽pH范围内表现出有效性。理论计算表明,碳化增强了铁碳衬底之间的电子传递,有助于提高催化性能。该系统在去除各种常见污染物方面也表现出通用性,并且在实际水基质中证明是有效的。这种将气凝胶与金属-碳电子转移相结合的协同方法有望扩展到其他高级氧化工艺,有助于保证水质安全和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic iron enhanced aerogel and peracetic acid for degradation of emerging organic contaminants

Synergistic iron enhanced aerogel and peracetic acid for degradation of emerging organic contaminants

Synergistic iron enhanced aerogel and peracetic acid for degradation of emerging organic contaminants
In response to the urgent need for efficient degradation of emerging organic contaminants, this study has developed a novel catalytic system based on an original Fe-doped aerogel catalyst (FeCAS) and its carbonization-enhanced variant (FeCAS-400), designed to improve the activation performance of peracetic acid (PAA). The FeCAS/PAA achieves a remarkable 96.1% degradation of sulfamethoxazole (SMX) without external energy input, while the FeCAS-400/PAA further elevates the SMX removal rate to 98.4% (kobs = 0.326 min−¹) and demonstrates effectiveness across a broad pH range of 3–11. Theoretical calculations reveal that carbonization enhances electron transfer between iron–carbon substrates, which contributes to improved catalytic performance. The system also exhibits versatility in removing a wide range of prevalent contaminants and proves effective in real water matrices. This synergistic approach, combining aerogels with metal–carbon electron transfer, holds promise for an extension to other advanced oxidation processes, contributing to the assurance of water quality safety and sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信