硅-氮-集成混合光纤:功能光子学的新平台

IF 10 1区 物理与天体物理 Q1 OPTICS
Zhengyu Yan, Shangran Xie, Caoyuan Wang, Cong Xiong, Ruowei Yu, Shuangyi Linghu, Fuxing Gu, Hongtao Xu, Zhenhua An, Ming Wu, Ai-Qun Liu, Ping Hua, Anna C. Peacock, Limin Xiao
{"title":"硅-氮-集成混合光纤:功能光子学的新平台","authors":"Zhengyu Yan,&nbsp;Shangran Xie,&nbsp;Caoyuan Wang,&nbsp;Cong Xiong,&nbsp;Ruowei Yu,&nbsp;Shuangyi Linghu,&nbsp;Fuxing Gu,&nbsp;Hongtao Xu,&nbsp;Zhenhua An,&nbsp;Ming Wu,&nbsp;Ai-Qun Liu,&nbsp;Ping Hua,&nbsp;Anna C. Peacock,&nbsp;Limin Xiao","doi":"10.1002/lpor.202400689","DOIUrl":null,"url":null,"abstract":"<p>Hybrid optical fibers that integrate exotic materials within more traditional silica glass architectures open a route for the development of highly functional all-fiber photonic systems. Here, a compact hybrid optical fiber platform is reported formed by depositing a silicon nitride (SiN<sub>x</sub> - nitride-rich) nanolayer onto the surface of fused-silica microfibers via plasma-enhanced chemical vapor deposition. The SiN<sub>x</sub> thickness can be precisely tuned over a range of tens of nanometers, while maintaining an ultra-smooth deposition surface, allowing for tunable coupling between the modes guided predominantly in the nanolayer and the fiber core. The effective indices of the hybrid modes display an anti-crossing behavior under resonant conditions, resulting in a rich dispersion landscape that can be tailored via adjusting the SiN<sub>x</sub> thickness. By fabricating a SiN<sub>x</sub>-silica hybrid microfiber with precise dispersion engineering and a low insertion loss, a flat supercontinuum spectrum spanning &gt;1.5 octaves (−20 dB level) has been generated. The results demonstrate that SiN<sub>x</sub>-silica hybrid microfibers can offer a unique combination of broadband transmission and wide tunablity of the mode properties, while still retaining the benefits of robust integration with conventional silica glass fiber networks, providing a rich playground for hybrid fiber-based photonic systems.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 5","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon-Nitride-Integrated Hybrid Optical Fibers: A New Platform for Functional Photonics\",\"authors\":\"Zhengyu Yan,&nbsp;Shangran Xie,&nbsp;Caoyuan Wang,&nbsp;Cong Xiong,&nbsp;Ruowei Yu,&nbsp;Shuangyi Linghu,&nbsp;Fuxing Gu,&nbsp;Hongtao Xu,&nbsp;Zhenhua An,&nbsp;Ming Wu,&nbsp;Ai-Qun Liu,&nbsp;Ping Hua,&nbsp;Anna C. Peacock,&nbsp;Limin Xiao\",\"doi\":\"10.1002/lpor.202400689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hybrid optical fibers that integrate exotic materials within more traditional silica glass architectures open a route for the development of highly functional all-fiber photonic systems. Here, a compact hybrid optical fiber platform is reported formed by depositing a silicon nitride (SiN<sub>x</sub> - nitride-rich) nanolayer onto the surface of fused-silica microfibers via plasma-enhanced chemical vapor deposition. The SiN<sub>x</sub> thickness can be precisely tuned over a range of tens of nanometers, while maintaining an ultra-smooth deposition surface, allowing for tunable coupling between the modes guided predominantly in the nanolayer and the fiber core. The effective indices of the hybrid modes display an anti-crossing behavior under resonant conditions, resulting in a rich dispersion landscape that can be tailored via adjusting the SiN<sub>x</sub> thickness. By fabricating a SiN<sub>x</sub>-silica hybrid microfiber with precise dispersion engineering and a low insertion loss, a flat supercontinuum spectrum spanning &gt;1.5 octaves (−20 dB level) has been generated. The results demonstrate that SiN<sub>x</sub>-silica hybrid microfibers can offer a unique combination of broadband transmission and wide tunablity of the mode properties, while still retaining the benefits of robust integration with conventional silica glass fiber networks, providing a rich playground for hybrid fiber-based photonic systems.</p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 5\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400689\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400689","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

混合光纤将外来材料集成到更传统的硅玻璃结构中,为高功能全光纤光子系统的发展开辟了一条道路。本文报道了一种紧凑的混合光纤平台,通过等离子体增强化学气相沉积在熔融二氧化硅微纤维表面沉积氮化硅(富含SiNx氮化硅)纳米层。SiNx厚度可以在几十纳米的范围内精确调节,同时保持超光滑的沉积表面,允许主要在纳米层和光纤芯中引导的模式之间的可调谐耦合。混合模式的有效指数在谐振条件下显示出抗交叉行为,从而产生丰富的色散,可以通过调整SiNx厚度来定制。通过制造具有精确色散工程和低插入损耗的SiNx - silica混合微光纤,可以产生跨越>;1.5倍频(−20 dB电平)的平坦超连续谱。结果表明,SiNx -二氧化硅混合微光纤可以提供宽带传输和模式特性的广泛可调性的独特组合,同时仍然保留与传统二氧化硅玻璃光纤网络强大集成的优势,为基于混合光纤的光子系统提供了丰富的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Silicon-Nitride-Integrated Hybrid Optical Fibers: A New Platform for Functional Photonics

Silicon-Nitride-Integrated Hybrid Optical Fibers: A New Platform for Functional Photonics

Silicon-Nitride-Integrated Hybrid Optical Fibers: A New Platform for Functional Photonics

Hybrid optical fibers that integrate exotic materials within more traditional silica glass architectures open a route for the development of highly functional all-fiber photonic systems. Here, a compact hybrid optical fiber platform is reported formed by depositing a silicon nitride (SiNx - nitride-rich) nanolayer onto the surface of fused-silica microfibers via plasma-enhanced chemical vapor deposition. The SiNx thickness can be precisely tuned over a range of tens of nanometers, while maintaining an ultra-smooth deposition surface, allowing for tunable coupling between the modes guided predominantly in the nanolayer and the fiber core. The effective indices of the hybrid modes display an anti-crossing behavior under resonant conditions, resulting in a rich dispersion landscape that can be tailored via adjusting the SiNx thickness. By fabricating a SiNx-silica hybrid microfiber with precise dispersion engineering and a low insertion loss, a flat supercontinuum spectrum spanning >1.5 octaves (−20 dB level) has been generated. The results demonstrate that SiNx-silica hybrid microfibers can offer a unique combination of broadband transmission and wide tunablity of the mode properties, while still retaining the benefits of robust integration with conventional silica glass fiber networks, providing a rich playground for hybrid fiber-based photonic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信