Zhi-Huang Lin;Chun-Yang Zhang;Xue-Ming Lin;Huibin Lin;Gui-Huang Zeng;C. L. Philip Chen
{"title":"基于对应增强的低重叠点云配准","authors":"Zhi-Huang Lin;Chun-Yang Zhang;Xue-Ming Lin;Huibin Lin;Gui-Huang Zeng;C. L. Philip Chen","doi":"10.1109/TASE.2024.3506120","DOIUrl":null,"url":null,"abstract":"Existing works have made some progress in point cloud registration, but most of them measure performance only on point cloud pairs with high overlap. In practical applications, it is often difficult to ensure that the collected point clouds overlap in large regions due to problems such as occlusion and noise. Therefore, a good low-overlap point cloud registration method is of great practical significance. However, extracting reliable correspondences from point clouds has always been a challenging task, particularly when dealing with low-overlap situation. In this paper, we propose a novel method for low-overlap point cloud registration via efficient correspondence augmentation, called AugLPCR, which not only enhances correspondences with high confidence, but also employs confidence weights to mitigate the impact of outliers. After the augmentation, the correspondences used for the transformation have a large amount of inliers, leading to improved registration performance. Extensive experiments on indoor and outdoor datasets demonstrate that the proposed AugLPCR is capable of maintaining consistent performance and achieve results comparable to or better than the state-of-the-art methods. Note to Practitioners—The motivation of this paper is to address the problem of registering two low-overlap point clouds. Mainstream algorithms for point cloud registration typically assume a sufficient overlap between point clouds. However, in practical scenarios, it is common to encounter scans with inadequate overlap. These conditions often hinder the extraction of reliable correspondences. This paper introduces an effective method for augmenting correspondences to address the problem of low inlier rates within predicted correspondences. While augmenting correspondences with high confidence, it also mitigates the influence of outliers and ambiguous points. Additionally, traditional approaches often divide superpoint regions before matching, but this can lead to the elimination of points in overlapping regions alongside outliers. To address this issue, we adjust the order of superpoint matching and region partitioning. The proposed framework can be easily applied to other correspondence-based point cloud registration models.","PeriodicalId":51060,"journal":{"name":"IEEE Transactions on Automation Science and Engineering","volume":"22 ","pages":"9363-9375"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Overlap Point Cloud Registration via Correspondence Augmentation\",\"authors\":\"Zhi-Huang Lin;Chun-Yang Zhang;Xue-Ming Lin;Huibin Lin;Gui-Huang Zeng;C. L. Philip Chen\",\"doi\":\"10.1109/TASE.2024.3506120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing works have made some progress in point cloud registration, but most of them measure performance only on point cloud pairs with high overlap. In practical applications, it is often difficult to ensure that the collected point clouds overlap in large regions due to problems such as occlusion and noise. Therefore, a good low-overlap point cloud registration method is of great practical significance. However, extracting reliable correspondences from point clouds has always been a challenging task, particularly when dealing with low-overlap situation. In this paper, we propose a novel method for low-overlap point cloud registration via efficient correspondence augmentation, called AugLPCR, which not only enhances correspondences with high confidence, but also employs confidence weights to mitigate the impact of outliers. After the augmentation, the correspondences used for the transformation have a large amount of inliers, leading to improved registration performance. Extensive experiments on indoor and outdoor datasets demonstrate that the proposed AugLPCR is capable of maintaining consistent performance and achieve results comparable to or better than the state-of-the-art methods. Note to Practitioners—The motivation of this paper is to address the problem of registering two low-overlap point clouds. Mainstream algorithms for point cloud registration typically assume a sufficient overlap between point clouds. However, in practical scenarios, it is common to encounter scans with inadequate overlap. These conditions often hinder the extraction of reliable correspondences. This paper introduces an effective method for augmenting correspondences to address the problem of low inlier rates within predicted correspondences. While augmenting correspondences with high confidence, it also mitigates the influence of outliers and ambiguous points. Additionally, traditional approaches often divide superpoint regions before matching, but this can lead to the elimination of points in overlapping regions alongside outliers. To address this issue, we adjust the order of superpoint matching and region partitioning. The proposed framework can be easily applied to other correspondence-based point cloud registration models.\",\"PeriodicalId\":51060,\"journal\":{\"name\":\"IEEE Transactions on Automation Science and Engineering\",\"volume\":\"22 \",\"pages\":\"9363-9375\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Automation Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10770597/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automation Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10770597/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Low-Overlap Point Cloud Registration via Correspondence Augmentation
Existing works have made some progress in point cloud registration, but most of them measure performance only on point cloud pairs with high overlap. In practical applications, it is often difficult to ensure that the collected point clouds overlap in large regions due to problems such as occlusion and noise. Therefore, a good low-overlap point cloud registration method is of great practical significance. However, extracting reliable correspondences from point clouds has always been a challenging task, particularly when dealing with low-overlap situation. In this paper, we propose a novel method for low-overlap point cloud registration via efficient correspondence augmentation, called AugLPCR, which not only enhances correspondences with high confidence, but also employs confidence weights to mitigate the impact of outliers. After the augmentation, the correspondences used for the transformation have a large amount of inliers, leading to improved registration performance. Extensive experiments on indoor and outdoor datasets demonstrate that the proposed AugLPCR is capable of maintaining consistent performance and achieve results comparable to or better than the state-of-the-art methods. Note to Practitioners—The motivation of this paper is to address the problem of registering two low-overlap point clouds. Mainstream algorithms for point cloud registration typically assume a sufficient overlap between point clouds. However, in practical scenarios, it is common to encounter scans with inadequate overlap. These conditions often hinder the extraction of reliable correspondences. This paper introduces an effective method for augmenting correspondences to address the problem of low inlier rates within predicted correspondences. While augmenting correspondences with high confidence, it also mitigates the influence of outliers and ambiguous points. Additionally, traditional approaches often divide superpoint regions before matching, but this can lead to the elimination of points in overlapping regions alongside outliers. To address this issue, we adjust the order of superpoint matching and region partitioning. The proposed framework can be easily applied to other correspondence-based point cloud registration models.
期刊介绍:
The IEEE Transactions on Automation Science and Engineering (T-ASE) publishes fundamental papers on Automation, emphasizing scientific results that advance efficiency, quality, productivity, and reliability. T-ASE encourages interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, operations research, and other fields. T-ASE welcomes results relevant to industries such as agriculture, biotechnology, healthcare, home automation, maintenance, manufacturing, pharmaceuticals, retail, security, service, supply chains, and transportation. T-ASE addresses a research community willing to integrate knowledge across disciplines and industries. For this purpose, each paper includes a Note to Practitioners that summarizes how its results can be applied or how they might be extended to apply in practice.