{"title":"金属卤化物钙钛矿在CO2光催化还原中的研究进展","authors":"Jiong-Ran Lv, Rui-Tang Guo, Hao-Wen Zhu, Xu-Dong Shi, Ming-Yang Liu, Wei-Guo Pan","doi":"10.1002/smll.202408921","DOIUrl":null,"url":null,"abstract":"<p>The photocatalytic reduction of CO<sub>2</sub> into valuable chemicals and fuels has become a significant research focus in recent years due to its environmental sustainability and energy efficiency. Metal halide perovskites (MHPs), renowned for their remarkable optoelectronic properties and tunable structures, are regarded as promising photocatalysts. Yet, their practical uses are constrained by inherent instability, severe electron–hole recombination, and a scarcity of active sites, prompting substantial research efforts to optimize MHP-based photocatalysts. This review summarizes the latest advancements in MHP-based photocatalysis. First the fundamental principles of photocatalysis are outlined and the structural and optical characteristics of MHPs are evaluated. Then key strategies for enhancing MHP photocatalysts, including morphology and surface modification, encapsulation, metal cation doping, heterojunction engineering, and molecular immobilization are highlighted. Finally, considering recent research progress and the needs for industrial application, challenges and future prospects are explored. This review aims to support researchers in the development of more efficient and stable MHP-based photocatalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 3","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Metal Halide Perovskites for CO2 Photocatalytic Reduction: An Overview and Future Prospects\",\"authors\":\"Jiong-Ran Lv, Rui-Tang Guo, Hao-Wen Zhu, Xu-Dong Shi, Ming-Yang Liu, Wei-Guo Pan\",\"doi\":\"10.1002/smll.202408921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The photocatalytic reduction of CO<sub>2</sub> into valuable chemicals and fuels has become a significant research focus in recent years due to its environmental sustainability and energy efficiency. Metal halide perovskites (MHPs), renowned for their remarkable optoelectronic properties and tunable structures, are regarded as promising photocatalysts. Yet, their practical uses are constrained by inherent instability, severe electron–hole recombination, and a scarcity of active sites, prompting substantial research efforts to optimize MHP-based photocatalysts. This review summarizes the latest advancements in MHP-based photocatalysis. First the fundamental principles of photocatalysis are outlined and the structural and optical characteristics of MHPs are evaluated. Then key strategies for enhancing MHP photocatalysts, including morphology and surface modification, encapsulation, metal cation doping, heterojunction engineering, and molecular immobilization are highlighted. Finally, considering recent research progress and the needs for industrial application, challenges and future prospects are explored. This review aims to support researchers in the development of more efficient and stable MHP-based photocatalysts.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 3\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408921\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408921","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recent Advances in Metal Halide Perovskites for CO2 Photocatalytic Reduction: An Overview and Future Prospects
The photocatalytic reduction of CO2 into valuable chemicals and fuels has become a significant research focus in recent years due to its environmental sustainability and energy efficiency. Metal halide perovskites (MHPs), renowned for their remarkable optoelectronic properties and tunable structures, are regarded as promising photocatalysts. Yet, their practical uses are constrained by inherent instability, severe electron–hole recombination, and a scarcity of active sites, prompting substantial research efforts to optimize MHP-based photocatalysts. This review summarizes the latest advancements in MHP-based photocatalysis. First the fundamental principles of photocatalysis are outlined and the structural and optical characteristics of MHPs are evaluated. Then key strategies for enhancing MHP photocatalysts, including morphology and surface modification, encapsulation, metal cation doping, heterojunction engineering, and molecular immobilization are highlighted. Finally, considering recent research progress and the needs for industrial application, challenges and future prospects are explored. This review aims to support researchers in the development of more efficient and stable MHP-based photocatalysts.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.