通过酸化和剪切应力,钙离子触发的丝素液液相分离和纺丝

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sejun Yang, Yeonwoo Yu, Seonghyeon Jo, Yehee Lee, Seojin Son, Ki Hoon Lee
{"title":"通过酸化和剪切应力,钙离子触发的丝素液液相分离和纺丝","authors":"Sejun Yang, Yeonwoo Yu, Seonghyeon Jo, Yehee Lee, Seojin Son, Ki Hoon Lee","doi":"10.1038/s41467-024-54588-1","DOIUrl":null,"url":null,"abstract":"<p>Many studies try to comprehend and replicate the natural silk spinning process due to its energy-efficient and eco-friendly process. In contrast to spider silk, the mechanisms of how silkworm silk fibroin (SF) undergoes liquid<b>–</b>liquid phase separation (LLPS) concerning the various environmental factors in the silk glands or how the SF coacervates transform into fibers remain unexplored. Here, we show that calcium ions, among the most abundant metal ions inside the silk glands, induce LLPS of SF under macromolecular crowded conditions by increasing both hydrophobic and electrostatic interactions between SF. Furthermore, SF coacervates assemble and further develop into fibrils under acidification and shear force. Finally, we prepare SF fiber using a pultrusion-based dry spinning, mirroring the natural silk spinning system. Unlike previous artificial spinning methods requiring concentrated solutions or harsh solvents, our process uses a less concentrated aqueous SF solution and minimal shear force, offering a biomimetic approach to fiber production.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium ion-triggered liquid-liquid phase separation of silk fibroin and spinning through acidification and shear stress\",\"authors\":\"Sejun Yang, Yeonwoo Yu, Seonghyeon Jo, Yehee Lee, Seojin Son, Ki Hoon Lee\",\"doi\":\"10.1038/s41467-024-54588-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many studies try to comprehend and replicate the natural silk spinning process due to its energy-efficient and eco-friendly process. In contrast to spider silk, the mechanisms of how silkworm silk fibroin (SF) undergoes liquid<b>–</b>liquid phase separation (LLPS) concerning the various environmental factors in the silk glands or how the SF coacervates transform into fibers remain unexplored. Here, we show that calcium ions, among the most abundant metal ions inside the silk glands, induce LLPS of SF under macromolecular crowded conditions by increasing both hydrophobic and electrostatic interactions between SF. Furthermore, SF coacervates assemble and further develop into fibrils under acidification and shear force. Finally, we prepare SF fiber using a pultrusion-based dry spinning, mirroring the natural silk spinning system. Unlike previous artificial spinning methods requiring concentrated solutions or harsh solvents, our process uses a less concentrated aqueous SF solution and minimal shear force, offering a biomimetic approach to fiber production.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54588-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54588-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

许多研究试图理解和复制天然丝纺丝的过程,因为它的节能和环保的过程。与蛛丝不同,蚕丝丝素蛋白(SF)的液-液相分离(LLPS)机制与丝腺中的各种环境因素有关,SF凝聚体如何转化为纤维的机制尚不清楚。本研究表明,在大分子拥挤条件下,丝腺内最丰富的金属离子钙离子通过增加丝腺间的疏水和静电相互作用诱导丝腺的LLPS。此外,在酸化和剪切力作用下,SF聚集并进一步发展成原纤维。最后,我们模仿天然丝纺丝系统,采用拉挤法制备了SF纤维。与以前需要浓溶液或苛刻溶剂的人工纺丝方法不同,我们的工艺使用浓度较低的SF水溶液和最小的剪切力,为纤维生产提供了仿生方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Calcium ion-triggered liquid-liquid phase separation of silk fibroin and spinning through acidification and shear stress

Calcium ion-triggered liquid-liquid phase separation of silk fibroin and spinning through acidification and shear stress

Many studies try to comprehend and replicate the natural silk spinning process due to its energy-efficient and eco-friendly process. In contrast to spider silk, the mechanisms of how silkworm silk fibroin (SF) undergoes liquidliquid phase separation (LLPS) concerning the various environmental factors in the silk glands or how the SF coacervates transform into fibers remain unexplored. Here, we show that calcium ions, among the most abundant metal ions inside the silk glands, induce LLPS of SF under macromolecular crowded conditions by increasing both hydrophobic and electrostatic interactions between SF. Furthermore, SF coacervates assemble and further develop into fibrils under acidification and shear force. Finally, we prepare SF fiber using a pultrusion-based dry spinning, mirroring the natural silk spinning system. Unlike previous artificial spinning methods requiring concentrated solutions or harsh solvents, our process uses a less concentrated aqueous SF solution and minimal shear force, offering a biomimetic approach to fiber production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信