Wenbo Peng, Yong Zhang, Xianyong Zhou, Jiawen Wu, Deng Wang, Geping Qu, Jie Zeng, Yintai Xu, Bo Jiang, Peide Zhu, Yifan Du, Zhitong Li, Xia Lei, Zhixin Liu, Lei Yan, Xingzhu Wang and Baomin Xu
{"title":"多组分倒钙钛矿太阳能电池的多功能能级可调空穴传输层","authors":"Wenbo Peng, Yong Zhang, Xianyong Zhou, Jiawen Wu, Deng Wang, Geping Qu, Jie Zeng, Yintai Xu, Bo Jiang, Peide Zhu, Yifan Du, Zhitong Li, Xia Lei, Zhixin Liu, Lei Yan, Xingzhu Wang and Baomin Xu","doi":"10.1039/D4EE03208J","DOIUrl":null,"url":null,"abstract":"<p >Optimization of buried interfaces is crucial for achieving high efficiency in inverted perovskite solar cells (PSCs), owing to their role in facilitating hole transport and passivating the buried interface defects. While self-assembled monolayers (SAMs) are commonly employed for this purpose, the inherent limitations of single SAMs, such as fixed material structure and energy levels, hinder their adaptability and further efficiency enhancement across diverse compositions. In this study, we present an effective strategy of blending with SAMs with varying dipole moments to modulate the energy levels and hole transport properties, leading to enhanced charge transport characteristics and suppression of energy losses at buried interfaces. The intrinsic mechanisms of energy level modulation on the device performance are further investigated through theoretical simulations. Ultimately, small-area (0.0736 cm<small><sup>2</sup></small>) inverted PSCs with a 1.56 eV bandgap achieve a champion power conversion efficiency (PCE) of 26.28% (certified efficiency of 25.80%), while large-area devices (1.1 cm<small><sup>2</sup></small>) demonstrate an efficiency of 24.65%. Moreover, the energy-level-tunable SAM materials exhibit applicability across various PSCs with different preparation methods and bandgaps, achieving efficiencies of 24.44% for anti-solvent-free (1.56 eV) and 19.03% for wide-bandgap (1.85 eV) perovskite solar cells, respectively. Notably, devices employing these SAM materials demonstrate excellent photostability, maintaining over 95% of initial efficiency after 1000 hours of operation at the maximum power point (MPP).</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 2","pages":" 874-883"},"PeriodicalIF":30.8000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells†\",\"authors\":\"Wenbo Peng, Yong Zhang, Xianyong Zhou, Jiawen Wu, Deng Wang, Geping Qu, Jie Zeng, Yintai Xu, Bo Jiang, Peide Zhu, Yifan Du, Zhitong Li, Xia Lei, Zhixin Liu, Lei Yan, Xingzhu Wang and Baomin Xu\",\"doi\":\"10.1039/D4EE03208J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Optimization of buried interfaces is crucial for achieving high efficiency in inverted perovskite solar cells (PSCs), owing to their role in facilitating hole transport and passivating the buried interface defects. While self-assembled monolayers (SAMs) are commonly employed for this purpose, the inherent limitations of single SAMs, such as fixed material structure and energy levels, hinder their adaptability and further efficiency enhancement across diverse compositions. In this study, we present an effective strategy of blending with SAMs with varying dipole moments to modulate the energy levels and hole transport properties, leading to enhanced charge transport characteristics and suppression of energy losses at buried interfaces. The intrinsic mechanisms of energy level modulation on the device performance are further investigated through theoretical simulations. Ultimately, small-area (0.0736 cm<small><sup>2</sup></small>) inverted PSCs with a 1.56 eV bandgap achieve a champion power conversion efficiency (PCE) of 26.28% (certified efficiency of 25.80%), while large-area devices (1.1 cm<small><sup>2</sup></small>) demonstrate an efficiency of 24.65%. Moreover, the energy-level-tunable SAM materials exhibit applicability across various PSCs with different preparation methods and bandgaps, achieving efficiencies of 24.44% for anti-solvent-free (1.56 eV) and 19.03% for wide-bandgap (1.85 eV) perovskite solar cells, respectively. Notably, devices employing these SAM materials demonstrate excellent photostability, maintaining over 95% of initial efficiency after 1000 hours of operation at the maximum power point (MPP).</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 2\",\"pages\":\" 874-883\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee03208j\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee03208j","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells†
Optimization of buried interfaces is crucial for achieving high efficiency in inverted perovskite solar cells (PSCs), owing to their role in facilitating hole transport and passivating the buried interface defects. While self-assembled monolayers (SAMs) are commonly employed for this purpose, the inherent limitations of single SAMs, such as fixed material structure and energy levels, hinder their adaptability and further efficiency enhancement across diverse compositions. In this study, we present an effective strategy of blending with SAMs with varying dipole moments to modulate the energy levels and hole transport properties, leading to enhanced charge transport characteristics and suppression of energy losses at buried interfaces. The intrinsic mechanisms of energy level modulation on the device performance are further investigated through theoretical simulations. Ultimately, small-area (0.0736 cm2) inverted PSCs with a 1.56 eV bandgap achieve a champion power conversion efficiency (PCE) of 26.28% (certified efficiency of 25.80%), while large-area devices (1.1 cm2) demonstrate an efficiency of 24.65%. Moreover, the energy-level-tunable SAM materials exhibit applicability across various PSCs with different preparation methods and bandgaps, achieving efficiencies of 24.44% for anti-solvent-free (1.56 eV) and 19.03% for wide-bandgap (1.85 eV) perovskite solar cells, respectively. Notably, devices employing these SAM materials demonstrate excellent photostability, maintaining over 95% of initial efficiency after 1000 hours of operation at the maximum power point (MPP).
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).