通过电子和几何商品化精制无金属碳纳米反应器促进H2O2电合成以实现高效水净化

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yifei Wang, Beibei Li, Guangheng Chen, Yuhan Wu, Meng Tian, Yongzhen Peng, Shixue Dou, Laiquan Li, Jingyu Sun
{"title":"通过电子和几何商品化精制无金属碳纳米反应器促进H2O2电合成以实现高效水净化","authors":"Yifei Wang, Beibei Li, Guangheng Chen, Yuhan Wu, Meng Tian, Yongzhen Peng, Shixue Dou, Laiquan Li, Jingyu Sun","doi":"10.1021/acs.est.4c11612","DOIUrl":null,"url":null,"abstract":"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) electrosynthesis using metal-free carbon materials via the 2e<sup>–</sup> oxygen reduction pathway has sparked considerable research interest. However, the scalable preparation of carbon electrocatalysts to achieve satisfactory H<sub>2</sub>O<sub>2</sub> yield in acidic media remains a grand challenge. Here, we present the design of a carbon nanoreactor series that integrates precise O/N codoping alongside well-regulated geometric structures targeting high-efficiency electrosynthesis of H<sub>2</sub>O<sub>2</sub>. Theoretical computations reveal that strategic N/O codoping facilitates partial electron transfer from C sites to O sites, realizing electronic rearrangement that optimizes C-site adsorption of *OOH. Concurrently, the O–O bond in *OOH is strengthened by charge transfer from antibonding to π-orbitals, stabilizing the O–O bond and preventing its dissociation. The carbon nanoreactor with a hollow bowl geometry also facilitates the mass transport of O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, achieving an H<sub>2</sub>O<sub>2</sub> selectivity of 96% in acidic media. Furthermore, a flow cell integrated with the refined nanoreactor catalyst achieves an impressive H<sub>2</sub>O<sub>2</sub> production rate of 2942.4 mg L<sup>–1</sup> h<sup>–1</sup>, coupled with stable operation of nearly 80 h, surpassing the state-of-the-art metal-free analogs. The feasibility of the electro-synthesized H<sub>2</sub>O<sub>2</sub> is further demonstrated to be highly efficient in wastewater remediation.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"127 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining Metal-Free Carbon Nanoreactors through Electronic and Geometric Comodification for Boosted H2O2 Electrosynthesis toward Efficient Water Decontamination\",\"authors\":\"Yifei Wang, Beibei Li, Guangheng Chen, Yuhan Wu, Meng Tian, Yongzhen Peng, Shixue Dou, Laiquan Li, Jingyu Sun\",\"doi\":\"10.1021/acs.est.4c11612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) electrosynthesis using metal-free carbon materials via the 2e<sup>–</sup> oxygen reduction pathway has sparked considerable research interest. However, the scalable preparation of carbon electrocatalysts to achieve satisfactory H<sub>2</sub>O<sub>2</sub> yield in acidic media remains a grand challenge. Here, we present the design of a carbon nanoreactor series that integrates precise O/N codoping alongside well-regulated geometric structures targeting high-efficiency electrosynthesis of H<sub>2</sub>O<sub>2</sub>. Theoretical computations reveal that strategic N/O codoping facilitates partial electron transfer from C sites to O sites, realizing electronic rearrangement that optimizes C-site adsorption of *OOH. Concurrently, the O–O bond in *OOH is strengthened by charge transfer from antibonding to π-orbitals, stabilizing the O–O bond and preventing its dissociation. The carbon nanoreactor with a hollow bowl geometry also facilitates the mass transport of O<sub>2</sub> and H<sub>2</sub>O<sub>2</sub>, achieving an H<sub>2</sub>O<sub>2</sub> selectivity of 96% in acidic media. Furthermore, a flow cell integrated with the refined nanoreactor catalyst achieves an impressive H<sub>2</sub>O<sub>2</sub> production rate of 2942.4 mg L<sup>–1</sup> h<sup>–1</sup>, coupled with stable operation of nearly 80 h, surpassing the state-of-the-art metal-free analogs. The feasibility of the electro-synthesized H<sub>2</sub>O<sub>2</sub> is further demonstrated to be highly efficient in wastewater remediation.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c11612\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11612","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

利用无金属碳材料通过2e -氧还原途径电合成过氧化氢(H2O2)引起了广泛的研究兴趣。然而,在酸性介质中可扩展制备碳电催化剂以获得满意的H2O2产率仍然是一个巨大的挑战。在这里,我们设计了一个碳纳米反应器系列,它集成了精确的O/N共掺杂和良好调节的几何结构,旨在高效电合成H2O2。理论计算表明,战略性N/O共掺杂促进了部分电子从C位转移到O位,实现了电子重排,优化了*OOH对C位的吸附。同时,*OOH中的O-O键通过电荷从反键轨道转移到π轨道而得到强化,从而稳定了O-O键,防止了O-O键的解离。碳纳米反应器具有空心碗状结构,有利于O2和H2O2的质量传递,在酸性介质中H2O2的选择性达到96%。此外,集成了精炼纳米反应器催化剂的液流电池的H2O2产率达到了2942.4 mg L-1 h - 1,并且稳定运行了近80小时,超过了最先进的无金属类似物。进一步验证了电合成H2O2在废水处理中的高效可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Refining Metal-Free Carbon Nanoreactors through Electronic and Geometric Comodification for Boosted H2O2 Electrosynthesis toward Efficient Water Decontamination

Refining Metal-Free Carbon Nanoreactors through Electronic and Geometric Comodification for Boosted H2O2 Electrosynthesis toward Efficient Water Decontamination
Hydrogen peroxide (H2O2) electrosynthesis using metal-free carbon materials via the 2e oxygen reduction pathway has sparked considerable research interest. However, the scalable preparation of carbon electrocatalysts to achieve satisfactory H2O2 yield in acidic media remains a grand challenge. Here, we present the design of a carbon nanoreactor series that integrates precise O/N codoping alongside well-regulated geometric structures targeting high-efficiency electrosynthesis of H2O2. Theoretical computations reveal that strategic N/O codoping facilitates partial electron transfer from C sites to O sites, realizing electronic rearrangement that optimizes C-site adsorption of *OOH. Concurrently, the O–O bond in *OOH is strengthened by charge transfer from antibonding to π-orbitals, stabilizing the O–O bond and preventing its dissociation. The carbon nanoreactor with a hollow bowl geometry also facilitates the mass transport of O2 and H2O2, achieving an H2O2 selectivity of 96% in acidic media. Furthermore, a flow cell integrated with the refined nanoreactor catalyst achieves an impressive H2O2 production rate of 2942.4 mg L–1 h–1, coupled with stable operation of nearly 80 h, surpassing the state-of-the-art metal-free analogs. The feasibility of the electro-synthesized H2O2 is further demonstrated to be highly efficient in wastewater remediation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信