快速充电全固态电池阴极,循环寿命长

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Christopher Doerrer , Xiangwen Gao , Junfu Bu , Samuel Wheeler , Mauro Pasta , Peter G. Bruce , Patrick S. Grant
{"title":"快速充电全固态电池阴极,循环寿命长","authors":"Christopher Doerrer ,&nbsp;Xiangwen Gao ,&nbsp;Junfu Bu ,&nbsp;Samuel Wheeler ,&nbsp;Mauro Pasta ,&nbsp;Peter G. Bruce ,&nbsp;Patrick S. Grant","doi":"10.1016/j.nanoen.2024.110531","DOIUrl":null,"url":null,"abstract":"<div><div>Many battery applications target fast charging to achieve an 80 % rise in state of charge (SOC) in <em>&lt;</em> 15 min. However, in the case of all-solid-state batteries (SSBs), they typically take several hours to reach 80 % SOC while retaining a high specific energy of 400 W h <span><math><mrow><mi>k</mi><msubsup><mrow><mi>g</mi></mrow><mrow><mi>cell</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>. We specify design strategies for fast-charging SSB cathodes with long cycle life and investigate the fast-charging capability of a sulfide-based single crystal Li-Ni-Mn-Co oxide composite cathode. At 30 °C and charging at 15 mA cm<sup><em>−</em>2</sup>, a specific capacity of 150 mA h g<sup><em>−</em>1</sup> was achieved in <em>∼</em>8 min, with 81 % capacity retention after 3000 cycles. Critically, a 3-electrode arrangement was used to avoid the common problem of overcharging at high current densities. By following the design strategy and optimized manufacturing, a 210 µm thick cathode was able to be charged at an extraordinary current density of 50 mA cm<sup><em>−</em>2</sup> to reach an areal capacity of 8 mA h cm<sup><em>−</em>2</sup> in only 10 min, suggesting practical cathodes for SSBs with 400 W h <span><math><mrow><mi>k</mi><msubsup><mrow><mi>g</mi></mrow><mrow><mi>cell</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span> may be within reach.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"134 ","pages":"Article 110531"},"PeriodicalIF":16.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast-charging all-solid-state battery cathodes with long cycle life\",\"authors\":\"Christopher Doerrer ,&nbsp;Xiangwen Gao ,&nbsp;Junfu Bu ,&nbsp;Samuel Wheeler ,&nbsp;Mauro Pasta ,&nbsp;Peter G. Bruce ,&nbsp;Patrick S. Grant\",\"doi\":\"10.1016/j.nanoen.2024.110531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many battery applications target fast charging to achieve an 80 % rise in state of charge (SOC) in <em>&lt;</em> 15 min. However, in the case of all-solid-state batteries (SSBs), they typically take several hours to reach 80 % SOC while retaining a high specific energy of 400 W h <span><math><mrow><mi>k</mi><msubsup><mrow><mi>g</mi></mrow><mrow><mi>cell</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span>. We specify design strategies for fast-charging SSB cathodes with long cycle life and investigate the fast-charging capability of a sulfide-based single crystal Li-Ni-Mn-Co oxide composite cathode. At 30 °C and charging at 15 mA cm<sup><em>−</em>2</sup>, a specific capacity of 150 mA h g<sup><em>−</em>1</sup> was achieved in <em>∼</em>8 min, with 81 % capacity retention after 3000 cycles. Critically, a 3-electrode arrangement was used to avoid the common problem of overcharging at high current densities. By following the design strategy and optimized manufacturing, a 210 µm thick cathode was able to be charged at an extraordinary current density of 50 mA cm<sup><em>−</em>2</sup> to reach an areal capacity of 8 mA h cm<sup><em>−</em>2</sup> in only 10 min, suggesting practical cathodes for SSBs with 400 W h <span><math><mrow><mi>k</mi><msubsup><mrow><mi>g</mi></mrow><mrow><mi>cell</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></math></span> may be within reach.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"134 \",\"pages\":\"Article 110531\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524012837\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524012837","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

许多电池应用的目标是快速充电,在15分钟内达到80%的充电状态(SOC)。然而,在全固态电池(ssb)的情况下,它们通常需要几个小时才能达到80%的SOC,同时保持400w h kgcell - 1kgcell - 1的高比能量。本文提出了长循环寿命快速充电的SSB阴极设计策略,并对硫化物基单晶Li- Ni-Mn-Co复合阴极的快速充电性能进行了研究。在30°C下,以15 mA cm - 2充电,在约8分钟内达到150 mA h g - 1的比容量,在3000次循环后保持81%的容量。关键的是,采用了三电极排列,以避免在高电流密度下过充电的常见问题。通过遵循设计策略和优化制造,210 μ m厚的阴极能够在50 mA cm - 2的异常电流密度下充电,仅在10分钟内达到8 mA h cm - 2的面容量,这表明400 W h kgcell - 1kgcell - 1的ssb阴极可能是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast-charging all-solid-state battery cathodes with long cycle life

Fast-charging all-solid-state battery cathodes with long cycle life
Many battery applications target fast charging to achieve an 80 % rise in state of charge (SOC) in < 15 min. However, in the case of all-solid-state batteries (SSBs), they typically take several hours to reach 80 % SOC while retaining a high specific energy of 400 W h kgcell1. We specify design strategies for fast-charging SSB cathodes with long cycle life and investigate the fast-charging capability of a sulfide-based single crystal Li-Ni-Mn-Co oxide composite cathode. At 30 °C and charging at 15 mA cm2, a specific capacity of 150 mA h g1 was achieved in 8 min, with 81 % capacity retention after 3000 cycles. Critically, a 3-electrode arrangement was used to avoid the common problem of overcharging at high current densities. By following the design strategy and optimized manufacturing, a 210 µm thick cathode was able to be charged at an extraordinary current density of 50 mA cm2 to reach an areal capacity of 8 mA h cm2 in only 10 min, suggesting practical cathodes for SSBs with 400 W h kgcell1 may be within reach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信