单细胞数据使解剖细胞类型存在于大量转录组数据。

Stem cells and development Pub Date : 2025-01-01 Epub Date: 2024-11-29 DOI:10.1089/scd.2024.0152
Wasco Wruck, James Adjaye
{"title":"单细胞数据使解剖细胞类型存在于大量转录组数据。","authors":"Wasco Wruck, James Adjaye","doi":"10.1089/scd.2024.0152","DOIUrl":null,"url":null,"abstract":"<p><p>The quality of organoid models can be assessed by single-cell-RNA-sequencing (scRNA-seq) but often only bulk transcriptome data is available. Here we present a pipeline for the analysis of scRNA-seq data and subsequent \"deconvolution,\" which is a method for estimating cell type fractions in bulk transcriptome data based on expression profiles and cell types found in scRNA-seq data derived from biopsies. We applied this pipeline on bulk iPSC-derived kidney and brain organoid transcriptome data to identify cell types employing two scRNA-seq kidney datasets and one brain dataset. Relevant cells present in kidney (e.g., proximal tubules, distal convoluted tubules, and podocytes) and brain (e.g., neurons, astrocytes, oligodendrocytes, and microglia) with obligatory endothelial and immune-related cells were identified. We anticipate that this pipeline will also enable estimation of cell type fractions in organoids of other tissues.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"17-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Cell Data Enables Dissecting Cell Types Present in Bulk Transcriptome Data.\",\"authors\":\"Wasco Wruck, James Adjaye\",\"doi\":\"10.1089/scd.2024.0152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The quality of organoid models can be assessed by single-cell-RNA-sequencing (scRNA-seq) but often only bulk transcriptome data is available. Here we present a pipeline for the analysis of scRNA-seq data and subsequent \\\"deconvolution,\\\" which is a method for estimating cell type fractions in bulk transcriptome data based on expression profiles and cell types found in scRNA-seq data derived from biopsies. We applied this pipeline on bulk iPSC-derived kidney and brain organoid transcriptome data to identify cell types employing two scRNA-seq kidney datasets and one brain dataset. Relevant cells present in kidney (e.g., proximal tubules, distal convoluted tubules, and podocytes) and brain (e.g., neurons, astrocytes, oligodendrocytes, and microglia) with obligatory endothelial and immune-related cells were identified. We anticipate that this pipeline will also enable estimation of cell type fractions in organoids of other tissues.</p>\",\"PeriodicalId\":94214,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":\" \",\"pages\":\"17-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2024.0152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

类器官模型的质量可以通过单细胞rna测序(scRNA-seq)来评估,但通常只有大量转录组数据可用。在这里,我们提出了一个用于分析scRNA-seq数据和随后的“反卷积”的管道,这是一种基于来自活检的scRNA-seq数据中发现的表达谱和细胞类型来估计大量转录组数据中细胞类型部分的方法。我们使用两个scRNA-seq肾脏数据集和一个大脑数据集,将该管道应用于大量ipsc衍生的肾脏和脑类器官转录组数据,以鉴定细胞类型。相关细胞存在于肾脏(例如,近端小管,远端曲小管和足细胞)和大脑(例如,神经元,星形胶质细胞,少突胶质细胞和小胶质细胞)中,具有强制性内皮细胞和免疫相关细胞。我们预计,这一管道也将使其他组织的类器官的细胞类型分数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Cell Data Enables Dissecting Cell Types Present in Bulk Transcriptome Data.

The quality of organoid models can be assessed by single-cell-RNA-sequencing (scRNA-seq) but often only bulk transcriptome data is available. Here we present a pipeline for the analysis of scRNA-seq data and subsequent "deconvolution," which is a method for estimating cell type fractions in bulk transcriptome data based on expression profiles and cell types found in scRNA-seq data derived from biopsies. We applied this pipeline on bulk iPSC-derived kidney and brain organoid transcriptome data to identify cell types employing two scRNA-seq kidney datasets and one brain dataset. Relevant cells present in kidney (e.g., proximal tubules, distal convoluted tubules, and podocytes) and brain (e.g., neurons, astrocytes, oligodendrocytes, and microglia) with obligatory endothelial and immune-related cells were identified. We anticipate that this pipeline will also enable estimation of cell type fractions in organoids of other tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信