{"title":"AFD表达的SRTX-1 GPCR不参与AFD的热感觉功能。","authors":"Laurie Chen, Nathan Harris, Piali Sengupta","doi":"10.17912/micropub.biology.001382","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature experience-regulated gene expression changes have been shown to underlie long-term adaptation of the response threshold of the AFD thermosensory neuron pair, and contribute to thermotaxis behavioral plasticity in <i>C. elegans</i> . We previously showed that the SRTX-1 GPCR is expressed primarily in AFD and is localized to their sensory endings. Here we find that SRTX-1 levels are regulated by the animal's temperature experience. However, loss or overexpression of <i>srtx-1</i> does not affect thermotaxis behaviors or examined temperature-evoked calcium responses in AFD. Our observations suggest that SRTX-1 may modulate AFD responses and behavior under defined temperature conditions, or in response to specific environmental stimuli.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603155/pdf/","citationCount":"0","resultStr":"{\"title\":\"The AFD-expressed SRTX-1 GPCR does not contribute to AFD thermosensory functions.\",\"authors\":\"Laurie Chen, Nathan Harris, Piali Sengupta\",\"doi\":\"10.17912/micropub.biology.001382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temperature experience-regulated gene expression changes have been shown to underlie long-term adaptation of the response threshold of the AFD thermosensory neuron pair, and contribute to thermotaxis behavioral plasticity in <i>C. elegans</i> . We previously showed that the SRTX-1 GPCR is expressed primarily in AFD and is localized to their sensory endings. Here we find that SRTX-1 levels are regulated by the animal's temperature experience. However, loss or overexpression of <i>srtx-1</i> does not affect thermotaxis behaviors or examined temperature-evoked calcium responses in AFD. Our observations suggest that SRTX-1 may modulate AFD responses and behavior under defined temperature conditions, or in response to specific environmental stimuli.</p>\",\"PeriodicalId\":74192,\"journal\":{\"name\":\"microPublication biology\",\"volume\":\"2024 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microPublication biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17912/micropub.biology.001382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
The AFD-expressed SRTX-1 GPCR does not contribute to AFD thermosensory functions.
Temperature experience-regulated gene expression changes have been shown to underlie long-term adaptation of the response threshold of the AFD thermosensory neuron pair, and contribute to thermotaxis behavioral plasticity in C. elegans . We previously showed that the SRTX-1 GPCR is expressed primarily in AFD and is localized to their sensory endings. Here we find that SRTX-1 levels are regulated by the animal's temperature experience. However, loss or overexpression of srtx-1 does not affect thermotaxis behaviors or examined temperature-evoked calcium responses in AFD. Our observations suggest that SRTX-1 may modulate AFD responses and behavior under defined temperature conditions, or in response to specific environmental stimuli.