Stefano Schenone, Judi E. Hewitt, Jenny Hillman, Rebecca Gladstone-Gallagher, Johanna Gammal, Conrad Pilditch, Andrew M. Lohrer, Eliana Ferretti, Mihailo Azhar, Patrice Delmas, Simon F. Thrush
{"title":"海底沉积物微地形作为生物多样性和生态系统功能的替代物。","authors":"Stefano Schenone, Judi E. Hewitt, Jenny Hillman, Rebecca Gladstone-Gallagher, Johanna Gammal, Conrad Pilditch, Andrew M. Lohrer, Eliana Ferretti, Mihailo Azhar, Patrice Delmas, Simon F. Thrush","doi":"10.1002/eap.3069","DOIUrl":null,"url":null,"abstract":"<p>Marine soft sediments play crucial roles in global biogeochemical cycles and biodiversity. Yet, with organisms often hidden in the sediment, they pose challenges for effective monitoring and management. This study introduces a novel approach utilizing sediment microtopography as a proxy for ecosystem functioning and biodiversity. Combining field sampling, benthic chamber incubations, and advanced Structure-from-Motion photogrammetry techniques, we investigated the relationships between microtopographic features and various ecological parameters across diverse subtidal habitats. Our findings reveal strong associations between sediment microtopography and environmental variables, benthic fluxes, biodiversity metrics, and community functional traits, with microtopography consistently explaining more than 50% of the variance in the data. This research demonstrates the potential of sediment microtopography as a cost-effective and scalable tool for assessing soft-sediment ecosystem dynamics and informing conservation strategies. By providing insights into the links between habitat structure and ecological processes, this study advances our understanding of marine benthic ecology and opens new possibilities for habitat assessment applications worldwide.</p>","PeriodicalId":55168,"journal":{"name":"Ecological Applications","volume":"35 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Seafloor sediment microtopography as a surrogate for biodiversity and ecosystem functioning\",\"authors\":\"Stefano Schenone, Judi E. Hewitt, Jenny Hillman, Rebecca Gladstone-Gallagher, Johanna Gammal, Conrad Pilditch, Andrew M. Lohrer, Eliana Ferretti, Mihailo Azhar, Patrice Delmas, Simon F. Thrush\",\"doi\":\"10.1002/eap.3069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marine soft sediments play crucial roles in global biogeochemical cycles and biodiversity. Yet, with organisms often hidden in the sediment, they pose challenges for effective monitoring and management. This study introduces a novel approach utilizing sediment microtopography as a proxy for ecosystem functioning and biodiversity. Combining field sampling, benthic chamber incubations, and advanced Structure-from-Motion photogrammetry techniques, we investigated the relationships between microtopographic features and various ecological parameters across diverse subtidal habitats. Our findings reveal strong associations between sediment microtopography and environmental variables, benthic fluxes, biodiversity metrics, and community functional traits, with microtopography consistently explaining more than 50% of the variance in the data. This research demonstrates the potential of sediment microtopography as a cost-effective and scalable tool for assessing soft-sediment ecosystem dynamics and informing conservation strategies. By providing insights into the links between habitat structure and ecological processes, this study advances our understanding of marine benthic ecology and opens new possibilities for habitat assessment applications worldwide.</p>\",\"PeriodicalId\":55168,\"journal\":{\"name\":\"Ecological Applications\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eap.3069\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Applications","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eap.3069","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Seafloor sediment microtopography as a surrogate for biodiversity and ecosystem functioning
Marine soft sediments play crucial roles in global biogeochemical cycles and biodiversity. Yet, with organisms often hidden in the sediment, they pose challenges for effective monitoring and management. This study introduces a novel approach utilizing sediment microtopography as a proxy for ecosystem functioning and biodiversity. Combining field sampling, benthic chamber incubations, and advanced Structure-from-Motion photogrammetry techniques, we investigated the relationships between microtopographic features and various ecological parameters across diverse subtidal habitats. Our findings reveal strong associations between sediment microtopography and environmental variables, benthic fluxes, biodiversity metrics, and community functional traits, with microtopography consistently explaining more than 50% of the variance in the data. This research demonstrates the potential of sediment microtopography as a cost-effective and scalable tool for assessing soft-sediment ecosystem dynamics and informing conservation strategies. By providing insights into the links between habitat structure and ecological processes, this study advances our understanding of marine benthic ecology and opens new possibilities for habitat assessment applications worldwide.
期刊介绍:
The pages of Ecological Applications are open to research and discussion papers that integrate ecological science and concepts with their application and implications. Of special interest are papers that develop the basic scientific principles on which environmental decision-making should rest, and those that discuss the application of ecological concepts to environmental problem solving, policy, and management. Papers that deal explicitly with policy matters are welcome. Interdisciplinary approaches are encouraged, as are short communications on emerging environmental challenges.