鱼腥草素对代谢紊乱的保护作用:重点关注氧化应激和相关事件。

IF 1.8 Q4 ENDOCRINOLOGY & METABOLISM
Journal of Diabetes and Metabolic Disorders Pub Date : 2024-10-21 eCollection Date: 2024-12-01 DOI:10.1007/s40200-024-01502-7
Mahboobe Sattari, Jamal Amri, Mohammad Esmaeil Shahaboddin, Mohadese Sattari, Ozra Tabatabaei-Malazy, Marzyeh Azmon, Reza Meshkani, Ghodratollah Panahi
{"title":"鱼腥草素对代谢紊乱的保护作用:重点关注氧化应激和相关事件。","authors":"Mahboobe Sattari, Jamal Amri, Mohammad Esmaeil Shahaboddin, Mohadese Sattari, Ozra Tabatabaei-Malazy, Marzyeh Azmon, Reza Meshkani, Ghodratollah Panahi","doi":"10.1007/s40200-024-01502-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Metabolic syndrome is increasingly recognized as a significant precursor to various chronic diseases, contributing to a growing public health concern. Its complex pathogenesis involves multiple interrelated mechanisms, with oxidative stress identified as a cornerstone that exacerbates other pathogenic pathways. This study elucidates the molecular mechanisms by which oxidative stress intensifies metabolic disturbances, particularly insulin resistance. Some recent research has focused on fisetin, a natural product known for its potential benefits in diabetes and its associated microvascular and macrovascular complications. This paper compiles a comprehensive collection of findings by reviewing studies conducted over the past decade, detailing dosages, investigated markers, and their respective outcomes. Notably, a recurrent finding was fisetin's ability to enhance Nrf2, a principal regulator of antioxidant defense, in both metabolic and non-metabolic diseases. Furthermore, intriguing results suggest that the effects of Nrf2 extend beyond oxidative stress modulation, demonstrating favorable impacts on tissue-specific functions in metabolic regulation. This highlights fisetin not only as an antioxidant but also as a potential therapeutic agent for improving metabolic health and mitigating the effects of metabolic syndrome. In conclusion, fisetin can enhance the body's antioxidant defenses by modulating the Nrf2 pathway while also improving metabolic health through its effects on inflammation, cell survival, and energy metabolism, offering a comprehensive approach to managing metabolic disorders.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":15635,"journal":{"name":"Journal of Diabetes and Metabolic Disorders","volume":"23 2","pages":"1753-1771"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599505/pdf/","citationCount":"0","resultStr":"{\"title\":\"The protective effects of fisetin in metabolic disorders: a focus on oxidative stress and associated events.\",\"authors\":\"Mahboobe Sattari, Jamal Amri, Mohammad Esmaeil Shahaboddin, Mohadese Sattari, Ozra Tabatabaei-Malazy, Marzyeh Azmon, Reza Meshkani, Ghodratollah Panahi\",\"doi\":\"10.1007/s40200-024-01502-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Metabolic syndrome is increasingly recognized as a significant precursor to various chronic diseases, contributing to a growing public health concern. Its complex pathogenesis involves multiple interrelated mechanisms, with oxidative stress identified as a cornerstone that exacerbates other pathogenic pathways. This study elucidates the molecular mechanisms by which oxidative stress intensifies metabolic disturbances, particularly insulin resistance. Some recent research has focused on fisetin, a natural product known for its potential benefits in diabetes and its associated microvascular and macrovascular complications. This paper compiles a comprehensive collection of findings by reviewing studies conducted over the past decade, detailing dosages, investigated markers, and their respective outcomes. Notably, a recurrent finding was fisetin's ability to enhance Nrf2, a principal regulator of antioxidant defense, in both metabolic and non-metabolic diseases. Furthermore, intriguing results suggest that the effects of Nrf2 extend beyond oxidative stress modulation, demonstrating favorable impacts on tissue-specific functions in metabolic regulation. This highlights fisetin not only as an antioxidant but also as a potential therapeutic agent for improving metabolic health and mitigating the effects of metabolic syndrome. In conclusion, fisetin can enhance the body's antioxidant defenses by modulating the Nrf2 pathway while also improving metabolic health through its effects on inflammation, cell survival, and energy metabolism, offering a comprehensive approach to managing metabolic disorders.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":15635,\"journal\":{\"name\":\"Journal of Diabetes and Metabolic Disorders\",\"volume\":\"23 2\",\"pages\":\"1753-1771\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599505/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes and Metabolic Disorders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40200-024-01502-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes and Metabolic Disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40200-024-01502-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The protective effects of fisetin in metabolic disorders: a focus on oxidative stress and associated events.

Abstract: Metabolic syndrome is increasingly recognized as a significant precursor to various chronic diseases, contributing to a growing public health concern. Its complex pathogenesis involves multiple interrelated mechanisms, with oxidative stress identified as a cornerstone that exacerbates other pathogenic pathways. This study elucidates the molecular mechanisms by which oxidative stress intensifies metabolic disturbances, particularly insulin resistance. Some recent research has focused on fisetin, a natural product known for its potential benefits in diabetes and its associated microvascular and macrovascular complications. This paper compiles a comprehensive collection of findings by reviewing studies conducted over the past decade, detailing dosages, investigated markers, and their respective outcomes. Notably, a recurrent finding was fisetin's ability to enhance Nrf2, a principal regulator of antioxidant defense, in both metabolic and non-metabolic diseases. Furthermore, intriguing results suggest that the effects of Nrf2 extend beyond oxidative stress modulation, demonstrating favorable impacts on tissue-specific functions in metabolic regulation. This highlights fisetin not only as an antioxidant but also as a potential therapeutic agent for improving metabolic health and mitigating the effects of metabolic syndrome. In conclusion, fisetin can enhance the body's antioxidant defenses by modulating the Nrf2 pathway while also improving metabolic health through its effects on inflammation, cell survival, and energy metabolism, offering a comprehensive approach to managing metabolic disorders.

Graphical abstract:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Diabetes and Metabolic Disorders
Journal of Diabetes and Metabolic Disorders Medicine-Internal Medicine
CiteScore
4.80
自引率
3.60%
发文量
210
期刊介绍: Journal of Diabetes & Metabolic Disorders is a peer reviewed journal which publishes original clinical and translational articles and reviews in the field of endocrinology and provides a forum of debate of the highest quality on these issues. Topics of interest include, but are not limited to, diabetes, lipid disorders, metabolic disorders, osteoporosis, interdisciplinary practices in endocrinology, cardiovascular and metabolic risk, aging research, obesity, traditional medicine, pychosomatic research, behavioral medicine, ethics and evidence-based practices.As of Jan 2018 the journal is published by Springer as a hybrid journal with no article processing charges. All articles published before 2018 are available free of charge on springerlink.Unofficial 2017 2-year Impact Factor: 1.816.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信