仿生间充质干细胞膜包被纳米颗粒递送MKP5通过IRE/XBP1途径抑制肝纤维化。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yafei Tian, Dandan Sun, Na Liu, Jianan Zhao, Tongjian Zhao, Xiaonan Liu, Xinzhe Dong, Li Dong, Wei Wang, Ping Jiao, Jie Ma
{"title":"仿生间充质干细胞膜包被纳米颗粒递送MKP5通过IRE/XBP1途径抑制肝纤维化。","authors":"Yafei Tian, Dandan Sun, Na Liu, Jianan Zhao, Tongjian Zhao, Xiaonan Liu, Xinzhe Dong, Li Dong, Wei Wang, Ping Jiao, Jie Ma","doi":"10.1186/s12951-024-03029-8","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic fibrosis is a common disease with high morbidity and mortality rates. The complex and poorly understood mechanisms underlying hepatic fibrosis represent a significant challenge for the development of more effective therapeutic strategies. MKP5 is a potential regulator of multiple fibrotic diseases. However, its precise role and mechanism of action in hepatic fibrosis remains unclear. This study identified a reduction in MKP5 expression in fibrotic liver tissues of mice treated with CCl<sub>4</sub> and observed that MKP5 knockout mice exhibited a more pronounced development of hepatic fibrosis. In addition, RNA-seq data indicated activation of protein processing in the endoplasmic reticulum signalling pathway in fibrotic liver tissues of mice lacking MKP5. Mechanistically, MKP5 inhibits the activation of hepatic stellate cells (HSCs) and hepatocyte apoptosis through the regulation of the IRE/XBP1 pathway. Based on these findings, we developed PLGA-MKP5 nanoparticles coated with a mesenchymal stem cell membrane (MSCM). Our results demonstrated that MSCM-PLGA-MKP5 was most effective in attenuating hepatic inflammation and fibrosis in murine models by modulating the IRE/XBP1 axis. This study contributes to the current understanding of the pathogenesis of hepatic fibrosis, suggesting that the targeted delivery of MKP5 via a nano-delivery system may represent a promising therapeutic approach to treat hepatic fibrosis.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"741"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606114/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomimetic mesenchymal stem cell membrane-coated nanoparticle delivery of MKP5 inhibits hepatic fibrosis through the IRE/XBP1 pathway.\",\"authors\":\"Yafei Tian, Dandan Sun, Na Liu, Jianan Zhao, Tongjian Zhao, Xiaonan Liu, Xinzhe Dong, Li Dong, Wei Wang, Ping Jiao, Jie Ma\",\"doi\":\"10.1186/s12951-024-03029-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatic fibrosis is a common disease with high morbidity and mortality rates. The complex and poorly understood mechanisms underlying hepatic fibrosis represent a significant challenge for the development of more effective therapeutic strategies. MKP5 is a potential regulator of multiple fibrotic diseases. However, its precise role and mechanism of action in hepatic fibrosis remains unclear. This study identified a reduction in MKP5 expression in fibrotic liver tissues of mice treated with CCl<sub>4</sub> and observed that MKP5 knockout mice exhibited a more pronounced development of hepatic fibrosis. In addition, RNA-seq data indicated activation of protein processing in the endoplasmic reticulum signalling pathway in fibrotic liver tissues of mice lacking MKP5. Mechanistically, MKP5 inhibits the activation of hepatic stellate cells (HSCs) and hepatocyte apoptosis through the regulation of the IRE/XBP1 pathway. Based on these findings, we developed PLGA-MKP5 nanoparticles coated with a mesenchymal stem cell membrane (MSCM). Our results demonstrated that MSCM-PLGA-MKP5 was most effective in attenuating hepatic inflammation and fibrosis in murine models by modulating the IRE/XBP1 axis. This study contributes to the current understanding of the pathogenesis of hepatic fibrosis, suggesting that the targeted delivery of MKP5 via a nano-delivery system may represent a promising therapeutic approach to treat hepatic fibrosis.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"741\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11606114/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-03029-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03029-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝纤维化是一种常见病,发病率和死亡率高。肝纤维化的复杂和鲜为人知的机制对开发更有效的治疗策略提出了重大挑战。MKP5是多种纤维化疾病的潜在调节因子。然而,其在肝纤维化中的确切作用和作用机制尚不清楚。本研究发现CCl4处理小鼠纤维化肝组织中MKP5表达降低,并观察到MKP5敲除小鼠表现出更明显的肝纤维化发展。此外,RNA-seq数据显示,在缺乏MKP5的小鼠纤维化肝组织中,内质网信号通路中的蛋白质加工被激活。在机制上,MKP5通过调控IRE/XBP1通路抑制肝星状细胞(HSCs)的活化和肝细胞凋亡。基于这些发现,我们开发了包被间充质干细胞膜(MSCM)的PLGA-MKP5纳米颗粒。我们的研究结果表明,MSCM-PLGA-MKP5通过调节IRE/XBP1轴在小鼠模型中最有效地减轻肝脏炎症和纤维化。这项研究有助于目前对肝纤维化发病机制的理解,表明通过纳米递送系统靶向递送MKP5可能是治疗肝纤维化的一种有前途的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomimetic mesenchymal stem cell membrane-coated nanoparticle delivery of MKP5 inhibits hepatic fibrosis through the IRE/XBP1 pathway.

Hepatic fibrosis is a common disease with high morbidity and mortality rates. The complex and poorly understood mechanisms underlying hepatic fibrosis represent a significant challenge for the development of more effective therapeutic strategies. MKP5 is a potential regulator of multiple fibrotic diseases. However, its precise role and mechanism of action in hepatic fibrosis remains unclear. This study identified a reduction in MKP5 expression in fibrotic liver tissues of mice treated with CCl4 and observed that MKP5 knockout mice exhibited a more pronounced development of hepatic fibrosis. In addition, RNA-seq data indicated activation of protein processing in the endoplasmic reticulum signalling pathway in fibrotic liver tissues of mice lacking MKP5. Mechanistically, MKP5 inhibits the activation of hepatic stellate cells (HSCs) and hepatocyte apoptosis through the regulation of the IRE/XBP1 pathway. Based on these findings, we developed PLGA-MKP5 nanoparticles coated with a mesenchymal stem cell membrane (MSCM). Our results demonstrated that MSCM-PLGA-MKP5 was most effective in attenuating hepatic inflammation and fibrosis in murine models by modulating the IRE/XBP1 axis. This study contributes to the current understanding of the pathogenesis of hepatic fibrosis, suggesting that the targeted delivery of MKP5 via a nano-delivery system may represent a promising therapeutic approach to treat hepatic fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信