一种基于CpG自组装的新型泛表位纳米疫苗增强了对黄病毒的免疫应答。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiuxiang He, Xiaoyan Ding, Jing Zhao, Jie Zeng, Yuxin Zhou, Wen Xiao, Dong Hua, Minchi Liu, Hongxia Guo, Yu Zhang, Minyue Qiu, Jintao Li
{"title":"一种基于CpG自组装的新型泛表位纳米疫苗增强了对黄病毒的免疫应答。","authors":"Jiuxiang He, Xiaoyan Ding, Jing Zhao, Jie Zeng, Yuxin Zhou, Wen Xiao, Dong Hua, Minchi Liu, Hongxia Guo, Yu Zhang, Minyue Qiu, Jintao Li","doi":"10.1186/s12951-024-03031-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Flavivirus is a highly prevalent and outbreak-prone disease, affecting billions of individuals annually and posing substantial public health challenges. Vaccination is critical to reducing the global impact of flavivirus infections, making the development of a safe and effective vaccine a top priority. The self-assembled pan-epitope vaccine presents key advantages for improving immunogenicity and safety without relying on external vectors or adding immunomodulatory elements, both of which are essential for successful vaccine development.</p><p><strong>Results: </strong>In this study, the pan-epitope peptide TBT was combined with adjuvant CpG to form the TBT-CpG nanovaccine (TBT-CpG NaVs), which was found to be spherical, uniform in shape, and demonstrated strong serum stability. In vitro studies showed that the TBT-CpG NaVs were efficiently taken up and internalized by bone marrow-derived dendritic cells (BMDCs). Flow cytometry and transcriptomic analysis indicated that the antigens were effectively presented to antigen-presenting cells (APCs) via the MHC II pathway, which facilitated BMDCs maturation and promoted the release of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6. In vivo studies confirmed that TBT-CpG NaVs enhanced antigen-specific IgG levels, significantly increased IFN-γ and IL-4 expression in spleen cells, and offered protective effects against Dengue virus (DENV) and Zika virus (ZIKV) infections. Safety evaluations revealed no hepatotoxicity and no significant organ damage in immunized mice.</p><p><strong>Conclusion: </strong>The self-assembled candidate nanovaccine TBT-CpG NaVs effectively activates BMDCs and triggers a targeted immune response, providing antiviral effects against DENV and ZIKV. This vaccine demonstrates good immunogenicity and safety, establishing a promising foundation and a new strategy for the development of safe and effective vaccines.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"738"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603839/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel pan-epitope based nanovaccine self-assembled with CpG enhances immune responses against flavivirus.\",\"authors\":\"Jiuxiang He, Xiaoyan Ding, Jing Zhao, Jie Zeng, Yuxin Zhou, Wen Xiao, Dong Hua, Minchi Liu, Hongxia Guo, Yu Zhang, Minyue Qiu, Jintao Li\",\"doi\":\"10.1186/s12951-024-03031-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Flavivirus is a highly prevalent and outbreak-prone disease, affecting billions of individuals annually and posing substantial public health challenges. Vaccination is critical to reducing the global impact of flavivirus infections, making the development of a safe and effective vaccine a top priority. The self-assembled pan-epitope vaccine presents key advantages for improving immunogenicity and safety without relying on external vectors or adding immunomodulatory elements, both of which are essential for successful vaccine development.</p><p><strong>Results: </strong>In this study, the pan-epitope peptide TBT was combined with adjuvant CpG to form the TBT-CpG nanovaccine (TBT-CpG NaVs), which was found to be spherical, uniform in shape, and demonstrated strong serum stability. In vitro studies showed that the TBT-CpG NaVs were efficiently taken up and internalized by bone marrow-derived dendritic cells (BMDCs). Flow cytometry and transcriptomic analysis indicated that the antigens were effectively presented to antigen-presenting cells (APCs) via the MHC II pathway, which facilitated BMDCs maturation and promoted the release of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6. In vivo studies confirmed that TBT-CpG NaVs enhanced antigen-specific IgG levels, significantly increased IFN-γ and IL-4 expression in spleen cells, and offered protective effects against Dengue virus (DENV) and Zika virus (ZIKV) infections. Safety evaluations revealed no hepatotoxicity and no significant organ damage in immunized mice.</p><p><strong>Conclusion: </strong>The self-assembled candidate nanovaccine TBT-CpG NaVs effectively activates BMDCs and triggers a targeted immune response, providing antiviral effects against DENV and ZIKV. This vaccine demonstrates good immunogenicity and safety, establishing a promising foundation and a new strategy for the development of safe and effective vaccines.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"738\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-03031-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03031-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:黄病毒是一种高度流行和易暴发的疾病,每年影响数十亿人,并对公共卫生构成重大挑战。疫苗接种对于减少黄病毒感染的全球影响至关重要,因此开发安全有效的疫苗是重中之重。自组装的泛表位疫苗在提高免疫原性和安全性方面具有关键优势,无需依赖外部载体或添加免疫调节元件,而这两者对于疫苗的成功开发至关重要。结果:本研究将泛表位肽TBT与佐剂CpG结合形成TBT-CpG纳米疫苗(TBT-CpG nav),发现其呈球形,形状均匀,具有较强的血清稳定性。体外研究表明,TBT-CpG nav可被骨髓源性树突状细胞(bmdc)有效吸收和内化。流式细胞术和转录组学分析表明,抗原通过MHC II途径有效呈递到抗原呈递细胞(APCs),促进BMDCs成熟,促进促炎细胞因子IL-1β、TNF-α和IL-6的释放。体内研究证实,TBT-CpG nav可增强脾脏细胞抗原特异性IgG水平,显著增加IFN-γ和IL-4表达,对登革热病毒(DENV)和寨卡病毒(ZIKV)感染具有保护作用。安全性评估显示,免疫小鼠无肝毒性和明显的器官损伤。结论:自组装候选纳米疫苗TBT-CpG nav可有效激活BMDCs并引发靶向免疫应答,对DENV和ZIKV具有抗病毒作用。该疫苗具有良好的免疫原性和安全性,为开发安全有效的疫苗奠定了良好的基础和新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel pan-epitope based nanovaccine self-assembled with CpG enhances immune responses against flavivirus.

Background: Flavivirus is a highly prevalent and outbreak-prone disease, affecting billions of individuals annually and posing substantial public health challenges. Vaccination is critical to reducing the global impact of flavivirus infections, making the development of a safe and effective vaccine a top priority. The self-assembled pan-epitope vaccine presents key advantages for improving immunogenicity and safety without relying on external vectors or adding immunomodulatory elements, both of which are essential for successful vaccine development.

Results: In this study, the pan-epitope peptide TBT was combined with adjuvant CpG to form the TBT-CpG nanovaccine (TBT-CpG NaVs), which was found to be spherical, uniform in shape, and demonstrated strong serum stability. In vitro studies showed that the TBT-CpG NaVs were efficiently taken up and internalized by bone marrow-derived dendritic cells (BMDCs). Flow cytometry and transcriptomic analysis indicated that the antigens were effectively presented to antigen-presenting cells (APCs) via the MHC II pathway, which facilitated BMDCs maturation and promoted the release of pro-inflammatory cytokines IL-1β, TNF-α, and IL-6. In vivo studies confirmed that TBT-CpG NaVs enhanced antigen-specific IgG levels, significantly increased IFN-γ and IL-4 expression in spleen cells, and offered protective effects against Dengue virus (DENV) and Zika virus (ZIKV) infections. Safety evaluations revealed no hepatotoxicity and no significant organ damage in immunized mice.

Conclusion: The self-assembled candidate nanovaccine TBT-CpG NaVs effectively activates BMDCs and triggers a targeted immune response, providing antiviral effects against DENV and ZIKV. This vaccine demonstrates good immunogenicity and safety, establishing a promising foundation and a new strategy for the development of safe and effective vaccines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信