Kristina E Atanasoff, Sabrina I Ophir, Andrea J Parsons, Jailene Paredes Casado, Nell S Lurain, Terry L Bowlin, Timothy J Opperman, Domenico Tortorella
{"title":"n -芳基嘧啶胺(NAPA)化合物是广泛作用的人巨细胞病毒感染和传播抑制剂。","authors":"Kristina E Atanasoff, Sabrina I Ophir, Andrea J Parsons, Jailene Paredes Casado, Nell S Lurain, Terry L Bowlin, Timothy J Opperman, Domenico Tortorella","doi":"10.1016/j.antiviral.2024.106044","DOIUrl":null,"url":null,"abstract":"<p><p>Human cytomegalovirus (HCMV) is a β-herpesvirus that contributes to the disease burden of immunocompromised and immunomodulated individuals, including transplant recipients and newborns. The FDA-approved HCMV drugs can exhibit drug resistance and severe side effects including bone marrow toxicity, gastrointestinal disruption, and nephrotoxicity. In a previous study, we identified the N-arylpyrimidinamine (NAPA) compound series as a new class of HCMV inhibitors that target early stages of infection. Here we describe the inhibitory activity of two potent NAPA analogs, MBXC-4336 and MBX-4992, that broadly block infection and spread. MBXC-4336 and MBX-4992 effectively inhibited infection by diverse HCMV strains and significantly prevented virus spread in fibroblast and epithelial cells as evaluated by quantifying infected cells and viral genome levels. Further, the NAPA compounds limited replication of clinical HCMV isolates, including a ganciclovir-resistant strain. Importantly, combination studies of NAPA compounds with ganciclovir demonstrated additive or synergistic inhibition of HCMV spread. Collectively, NAPA compounds have therapeutic potential for development as a novel class of anti-HCMV drugs.</p>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":" ","pages":"106044"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-arylpyrimidinamine (NAPA) compounds are broadly acting inhibitors of human cytomegalovirus infection and spread.\",\"authors\":\"Kristina E Atanasoff, Sabrina I Ophir, Andrea J Parsons, Jailene Paredes Casado, Nell S Lurain, Terry L Bowlin, Timothy J Opperman, Domenico Tortorella\",\"doi\":\"10.1016/j.antiviral.2024.106044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human cytomegalovirus (HCMV) is a β-herpesvirus that contributes to the disease burden of immunocompromised and immunomodulated individuals, including transplant recipients and newborns. The FDA-approved HCMV drugs can exhibit drug resistance and severe side effects including bone marrow toxicity, gastrointestinal disruption, and nephrotoxicity. In a previous study, we identified the N-arylpyrimidinamine (NAPA) compound series as a new class of HCMV inhibitors that target early stages of infection. Here we describe the inhibitory activity of two potent NAPA analogs, MBXC-4336 and MBX-4992, that broadly block infection and spread. MBXC-4336 and MBX-4992 effectively inhibited infection by diverse HCMV strains and significantly prevented virus spread in fibroblast and epithelial cells as evaluated by quantifying infected cells and viral genome levels. Further, the NAPA compounds limited replication of clinical HCMV isolates, including a ganciclovir-resistant strain. Importantly, combination studies of NAPA compounds with ganciclovir demonstrated additive or synergistic inhibition of HCMV spread. Collectively, NAPA compounds have therapeutic potential for development as a novel class of anti-HCMV drugs.</p>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\" \",\"pages\":\"106044\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.antiviral.2024.106044\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.antiviral.2024.106044","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
N-arylpyrimidinamine (NAPA) compounds are broadly acting inhibitors of human cytomegalovirus infection and spread.
Human cytomegalovirus (HCMV) is a β-herpesvirus that contributes to the disease burden of immunocompromised and immunomodulated individuals, including transplant recipients and newborns. The FDA-approved HCMV drugs can exhibit drug resistance and severe side effects including bone marrow toxicity, gastrointestinal disruption, and nephrotoxicity. In a previous study, we identified the N-arylpyrimidinamine (NAPA) compound series as a new class of HCMV inhibitors that target early stages of infection. Here we describe the inhibitory activity of two potent NAPA analogs, MBXC-4336 and MBX-4992, that broadly block infection and spread. MBXC-4336 and MBX-4992 effectively inhibited infection by diverse HCMV strains and significantly prevented virus spread in fibroblast and epithelial cells as evaluated by quantifying infected cells and viral genome levels. Further, the NAPA compounds limited replication of clinical HCMV isolates, including a ganciclovir-resistant strain. Importantly, combination studies of NAPA compounds with ganciclovir demonstrated additive or synergistic inhibition of HCMV spread. Collectively, NAPA compounds have therapeutic potential for development as a novel class of anti-HCMV drugs.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.