佛罗里达侧耳与蛹虫草属间杂种多糖的GC-MS分析。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Varsha Meshram, Prachi Thakur, Shailesh Kumar Jadhav, Nagendra Kumar Chandrawanshi
{"title":"佛罗里达侧耳与蛹虫草属间杂种多糖的GC-MS分析。","authors":"Varsha Meshram, Prachi Thakur, Shailesh Kumar Jadhav, Nagendra Kumar Chandrawanshi","doi":"10.1007/s12010-024-05121-z","DOIUrl":null,"url":null,"abstract":"<p><p>Edible and medicinal mushrooms are valuable sources of polysaccharides, known for their dual roles as immunostimulants and immunosuppressants. This study aimed to enhance polysaccharide content by fusing two mushroom species, P. florida and C. militaris, while exploring their antioxidant and antibacterial potential. These mushrooms have diverse health benefits, including lowering high cholesterol, providing anti-inflammatory effects, supporting diabetes management, aiding in cancer treatment, and enhancing the efficacy of COVID-19 vaccines. Successful hyphal fusion was achieved, and optimal culture conditions were determined using response surface methodology. The hybrids exhibited superior growth compared to the parental strains. Hyphal fusion improved several attributes, resulting in diverse hybrids with increased biomass and metabolite production. FTIR analysis confirmed the presence of exopolysaccharides, with concentrations measured at 28.4 g/L (P1), 31.50 g/L (CD), and 36.74 g/L (F3). GC-MS analysis identified various bioactive metabolites, including a higher concentration of dimethyl palmitamine in the hybrid, a novel compound, butanenitrile, 2-(methoxymethoxy), which was not found in the parental strains. These compounds are likely responsible for the enhanced antimicrobial and antioxidant activities.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GC-MS Analysis of Polysaccharides from an Intergeneric Hybrid of Pleurotus florida and Cordyceps militaris: A Comparative Study.\",\"authors\":\"Varsha Meshram, Prachi Thakur, Shailesh Kumar Jadhav, Nagendra Kumar Chandrawanshi\",\"doi\":\"10.1007/s12010-024-05121-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Edible and medicinal mushrooms are valuable sources of polysaccharides, known for their dual roles as immunostimulants and immunosuppressants. This study aimed to enhance polysaccharide content by fusing two mushroom species, P. florida and C. militaris, while exploring their antioxidant and antibacterial potential. These mushrooms have diverse health benefits, including lowering high cholesterol, providing anti-inflammatory effects, supporting diabetes management, aiding in cancer treatment, and enhancing the efficacy of COVID-19 vaccines. Successful hyphal fusion was achieved, and optimal culture conditions were determined using response surface methodology. The hybrids exhibited superior growth compared to the parental strains. Hyphal fusion improved several attributes, resulting in diverse hybrids with increased biomass and metabolite production. FTIR analysis confirmed the presence of exopolysaccharides, with concentrations measured at 28.4 g/L (P1), 31.50 g/L (CD), and 36.74 g/L (F3). GC-MS analysis identified various bioactive metabolites, including a higher concentration of dimethyl palmitamine in the hybrid, a novel compound, butanenitrile, 2-(methoxymethoxy), which was not found in the parental strains. These compounds are likely responsible for the enhanced antimicrobial and antioxidant activities.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05121-z\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05121-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

食用和药用蘑菇是多糖的宝贵来源,以其免疫刺激剂和免疫抑制剂的双重作用而闻名。本研究旨在通过融合两种蘑菇(佛罗里达菇和军国菇)来提高多糖含量,同时探索其抗氧化和抗菌潜力。这些蘑菇具有多种健康益处,包括降低高胆固醇,提供抗炎作用,支持糖尿病管理,帮助癌症治疗,以及提高COVID-19疫苗的功效。菌丝融合成功,利用响应面法确定最佳培养条件。杂种表现出比亲本更好的生长能力。菌丝融合改善了几种性状,使杂种品种多样化,生物量和代谢物产量增加。FTIR分析证实了外多糖的存在,其浓度分别为28.4 g/L (P1)、31.50 g/L (CD)和36.74 g/L (F3)。GC-MS分析鉴定出多种生物活性代谢物,包括杂交菌株中较高浓度的二甲基棕榈胺,一种新的化合物丁腈,2-(甲氧基甲氧基),这在亲本菌株中没有发现。这些化合物可能是增强抗菌和抗氧化活性的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GC-MS Analysis of Polysaccharides from an Intergeneric Hybrid of Pleurotus florida and Cordyceps militaris: A Comparative Study.

Edible and medicinal mushrooms are valuable sources of polysaccharides, known for their dual roles as immunostimulants and immunosuppressants. This study aimed to enhance polysaccharide content by fusing two mushroom species, P. florida and C. militaris, while exploring their antioxidant and antibacterial potential. These mushrooms have diverse health benefits, including lowering high cholesterol, providing anti-inflammatory effects, supporting diabetes management, aiding in cancer treatment, and enhancing the efficacy of COVID-19 vaccines. Successful hyphal fusion was achieved, and optimal culture conditions were determined using response surface methodology. The hybrids exhibited superior growth compared to the parental strains. Hyphal fusion improved several attributes, resulting in diverse hybrids with increased biomass and metabolite production. FTIR analysis confirmed the presence of exopolysaccharides, with concentrations measured at 28.4 g/L (P1), 31.50 g/L (CD), and 36.74 g/L (F3). GC-MS analysis identified various bioactive metabolites, including a higher concentration of dimethyl palmitamine in the hybrid, a novel compound, butanenitrile, 2-(methoxymethoxy), which was not found in the parental strains. These compounds are likely responsible for the enhanced antimicrobial and antioxidant activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信