多功能纳米凝胶在生物医学中的应用进展与展望

Bicheng Han, Zideng Dai, Hangrong Chen
{"title":"多功能纳米凝胶在生物医学中的应用进展与展望","authors":"Bicheng Han,&nbsp;Zideng Dai,&nbsp;Hangrong Chen","doi":"10.1002/mba2.104","DOIUrl":null,"url":null,"abstract":"<p>Nanogels (NGs) are considered as a kind of nanoscale hydrogels (&lt;200 nm) endowing with the functions of both nanomaterials and hydrogels. In the last 20 years, NGs have garnered significant attention due to their versatility and adaptability. Herein, a comprehensive overview of the latest advancements and current research status of NGs is provided, with a particular focus on the synthesis strategies involving physical and chemical cross-linking methods, as well as the advantages of NGs in drug loading and responsive release. Based on the diverse design strategies of NGs, four key biomedical applications, including inflammation therapy, regenerative medicine, bioimaging and tumor therapy are further summarized and discussed. Moreover, the existed inherent challenges facing NGs are proposed, while highlighting their potential to revolutionize therapeutic and diagnostic approaches. Finally, we look forward to the further development and promising potentials of NGs in biomedical applications. This review aims to serve as a valuable reference for researchers, providing some insights into the evolving landscape of NGs and their potential in advanced biomedical applications.</p>","PeriodicalId":100901,"journal":{"name":"MedComm – Biomaterials and Applications","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.104","citationCount":"0","resultStr":"{\"title\":\"Recent advances and perspectives of multifunctional nanogels in biomedical applications\",\"authors\":\"Bicheng Han,&nbsp;Zideng Dai,&nbsp;Hangrong Chen\",\"doi\":\"10.1002/mba2.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanogels (NGs) are considered as a kind of nanoscale hydrogels (&lt;200 nm) endowing with the functions of both nanomaterials and hydrogels. In the last 20 years, NGs have garnered significant attention due to their versatility and adaptability. Herein, a comprehensive overview of the latest advancements and current research status of NGs is provided, with a particular focus on the synthesis strategies involving physical and chemical cross-linking methods, as well as the advantages of NGs in drug loading and responsive release. Based on the diverse design strategies of NGs, four key biomedical applications, including inflammation therapy, regenerative medicine, bioimaging and tumor therapy are further summarized and discussed. Moreover, the existed inherent challenges facing NGs are proposed, while highlighting their potential to revolutionize therapeutic and diagnostic approaches. Finally, we look forward to the further development and promising potentials of NGs in biomedical applications. This review aims to serve as a valuable reference for researchers, providing some insights into the evolving landscape of NGs and their potential in advanced biomedical applications.</p>\",\"PeriodicalId\":100901,\"journal\":{\"name\":\"MedComm – Biomaterials and Applications\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm – Biomaterials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mba2.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Biomaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mba2.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米凝胶(NGs)被认为是一种兼具纳米材料和水凝胶功能的纳米级水凝胶(< 200nm)。在过去的20年里,ngg因其多功能性和适应性而获得了极大的关注。本文综述了纳米颗粒的最新进展和研究现状,重点介绍了纳米颗粒的物理交联和化学交联合成策略,以及纳米颗粒在载药和反应释放方面的优势。基于NGs的多种设计策略,进一步总结和讨论了NGs在炎症治疗、再生医学、生物成像和肿瘤治疗等生物医学领域的四个关键应用。此外,本文还提出了纳米粒子所面临的固有挑战,同时强调了它们在彻底改变治疗和诊断方法方面的潜力。最后,展望了纳米粒子在生物医学领域的进一步发展和应用前景。本文综述旨在为研究人员提供有价值的参考,为纳米粒子的发展前景及其在先进生物医学应用中的潜力提供一些见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent advances and perspectives of multifunctional nanogels in biomedical applications

Recent advances and perspectives of multifunctional nanogels in biomedical applications

Nanogels (NGs) are considered as a kind of nanoscale hydrogels (<200 nm) endowing with the functions of both nanomaterials and hydrogels. In the last 20 years, NGs have garnered significant attention due to their versatility and adaptability. Herein, a comprehensive overview of the latest advancements and current research status of NGs is provided, with a particular focus on the synthesis strategies involving physical and chemical cross-linking methods, as well as the advantages of NGs in drug loading and responsive release. Based on the diverse design strategies of NGs, four key biomedical applications, including inflammation therapy, regenerative medicine, bioimaging and tumor therapy are further summarized and discussed. Moreover, the existed inherent challenges facing NGs are proposed, while highlighting their potential to revolutionize therapeutic and diagnostic approaches. Finally, we look forward to the further development and promising potentials of NGs in biomedical applications. This review aims to serve as a valuable reference for researchers, providing some insights into the evolving landscape of NGs and their potential in advanced biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信