胰岛细胞中多泡体和分泌颗粒的定位和释放的比较:2型糖尿病的失调

Priyadarshini Veerabhadraswamy, Kiran Lata, Sristi Dey, Prajakta Belekar, Lakshmi Kothegala, Vidya Mangala Prasad, Nikhil R. Gandasi
{"title":"胰岛细胞中多泡体和分泌颗粒的定位和释放的比较:2型糖尿病的失调","authors":"Priyadarshini Veerabhadraswamy,&nbsp;Kiran Lata,&nbsp;Sristi Dey,&nbsp;Prajakta Belekar,&nbsp;Lakshmi Kothegala,&nbsp;Vidya Mangala Prasad,&nbsp;Nikhil R. Gandasi","doi":"10.1002/jex2.70014","DOIUrl":null,"url":null,"abstract":"<p>Multivesicular bodies (MVBs) are vesicles of endosomal origin containing intraluminal vesicles, which upon fusion with plasma membrane, secrete exosomes. They play a significant role in the physiology and pathology of type-2 diabetes (T2D) due to disrupted intercellular communication. The role of MVBs and their influence on insulin secretory granules (ISGs) of β-cells or their characterization is yet to be uncovered. In our study, we compared MVBs to largely well-characterized ISGs in β-cells. This study compares the density, localization, and exocytosis of CD63+ compartments (CD63+c) with NPY labelled ISGs (NISGs) in β-cells. For this, tetraspanin CD63 was exploited to majorly label MVBs in β-cells. These labels preserve the structural integrity of labelled compartments and mostly do not localize with other endo-lysosomal compartments. This study showed that the β-cells have a significantly higher density of NISGs than CD63+c. CD63+c and NISGs are spatially localized apart within β-cells. The proteins that localize with CD63+c are different from the ones that localize with NISGs. Exocytosis of NISGs occurs at the periphery of the β-cells and takes significantly less time when compared to the release of CD63+c, which is non-peripheral and takes a longer duration. Mechanistically, the availability of CD63+c for exocytosis was assessed and found that an equilibrium is maintained between docking and undocking states at the plasma membrane. Although there are a high number of short-term residing, visiting CD63+c at the plasma membrane, the availability of CD63+c for exocytosis is maintained due to docking and undocking states. Further, a significant reduction in the density of NISGs and CD63+c was observed in β-cells isolated from T2D donors compared to healthy counterparts. Studying the effect of MVBs on insulin secretion in physiological and T2D conditions has huge potential. This study provides a strong basis to open new avenues for such future studies.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70014","citationCount":"0","resultStr":"{\"title\":\"Comparison of localization and release of multivesicular bodies and secretory granules in islet cells: Dysregulation during type-2 diabetes\",\"authors\":\"Priyadarshini Veerabhadraswamy,&nbsp;Kiran Lata,&nbsp;Sristi Dey,&nbsp;Prajakta Belekar,&nbsp;Lakshmi Kothegala,&nbsp;Vidya Mangala Prasad,&nbsp;Nikhil R. Gandasi\",\"doi\":\"10.1002/jex2.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multivesicular bodies (MVBs) are vesicles of endosomal origin containing intraluminal vesicles, which upon fusion with plasma membrane, secrete exosomes. They play a significant role in the physiology and pathology of type-2 diabetes (T2D) due to disrupted intercellular communication. The role of MVBs and their influence on insulin secretory granules (ISGs) of β-cells or their characterization is yet to be uncovered. In our study, we compared MVBs to largely well-characterized ISGs in β-cells. This study compares the density, localization, and exocytosis of CD63+ compartments (CD63+c) with NPY labelled ISGs (NISGs) in β-cells. For this, tetraspanin CD63 was exploited to majorly label MVBs in β-cells. These labels preserve the structural integrity of labelled compartments and mostly do not localize with other endo-lysosomal compartments. This study showed that the β-cells have a significantly higher density of NISGs than CD63+c. CD63+c and NISGs are spatially localized apart within β-cells. The proteins that localize with CD63+c are different from the ones that localize with NISGs. Exocytosis of NISGs occurs at the periphery of the β-cells and takes significantly less time when compared to the release of CD63+c, which is non-peripheral and takes a longer duration. Mechanistically, the availability of CD63+c for exocytosis was assessed and found that an equilibrium is maintained between docking and undocking states at the plasma membrane. Although there are a high number of short-term residing, visiting CD63+c at the plasma membrane, the availability of CD63+c for exocytosis is maintained due to docking and undocking states. Further, a significant reduction in the density of NISGs and CD63+c was observed in β-cells isolated from T2D donors compared to healthy counterparts. Studying the effect of MVBs on insulin secretion in physiological and T2D conditions has huge potential. This study provides a strong basis to open new avenues for such future studies.</p>\",\"PeriodicalId\":73747,\"journal\":{\"name\":\"Journal of extracellular biology\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of extracellular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多泡体(multives水泡体,MVBs)是起源于内体的囊泡,含有腔内囊泡,与质膜融合后分泌外泌体。由于细胞间通讯中断,它们在2型糖尿病(T2D)的生理和病理中起着重要作用。MVBs的作用及其对β细胞胰岛素分泌颗粒(ISGs)的影响及其特性尚不清楚。在我们的研究中,我们比较了MVBs与β细胞中大部分已被充分表征的isg。本研究比较了β-细胞中CD63+区室(CD63+c)和NPY标记的isg (nisg)的密度、定位和胞出量。为此,利用tetraspanin CD63主要标记β细胞中的MVBs。这些标记保持了所标记区室的结构完整性,并且大多数不与其他内溶酶体区室定位。本研究表明,β-细胞的nisg密度明显高于CD63+c。CD63+c和nisg在β细胞内的空间定位是分开的。与CD63+c定位的蛋白质与与nisg定位的蛋白质不同。nisg的胞吐发生在β细胞的外周,与CD63+c的非外周释放相比,其时间明显更短,持续时间更长。在机制上,我们评估了CD63+c在胞外分泌中的可用性,发现在质膜的对接和非对接状态之间保持了平衡。虽然有大量的CD63+c短期停留在质膜上,但由于对接和非对接状态,CD63+c的胞外作用得以维持。此外,与健康供体相比,从T2D供体分离的β-细胞中观察到nisg和CD63+c的密度显著降低。研究MVBs在生理和T2D条件下对胰岛素分泌的影响具有巨大的潜力。本研究为今后的研究开辟新的途径提供了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparison of localization and release of multivesicular bodies and secretory granules in islet cells: Dysregulation during type-2 diabetes

Comparison of localization and release of multivesicular bodies and secretory granules in islet cells: Dysregulation during type-2 diabetes

Multivesicular bodies (MVBs) are vesicles of endosomal origin containing intraluminal vesicles, which upon fusion with plasma membrane, secrete exosomes. They play a significant role in the physiology and pathology of type-2 diabetes (T2D) due to disrupted intercellular communication. The role of MVBs and their influence on insulin secretory granules (ISGs) of β-cells or their characterization is yet to be uncovered. In our study, we compared MVBs to largely well-characterized ISGs in β-cells. This study compares the density, localization, and exocytosis of CD63+ compartments (CD63+c) with NPY labelled ISGs (NISGs) in β-cells. For this, tetraspanin CD63 was exploited to majorly label MVBs in β-cells. These labels preserve the structural integrity of labelled compartments and mostly do not localize with other endo-lysosomal compartments. This study showed that the β-cells have a significantly higher density of NISGs than CD63+c. CD63+c and NISGs are spatially localized apart within β-cells. The proteins that localize with CD63+c are different from the ones that localize with NISGs. Exocytosis of NISGs occurs at the periphery of the β-cells and takes significantly less time when compared to the release of CD63+c, which is non-peripheral and takes a longer duration. Mechanistically, the availability of CD63+c for exocytosis was assessed and found that an equilibrium is maintained between docking and undocking states at the plasma membrane. Although there are a high number of short-term residing, visiting CD63+c at the plasma membrane, the availability of CD63+c for exocytosis is maintained due to docking and undocking states. Further, a significant reduction in the density of NISGs and CD63+c was observed in β-cells isolated from T2D donors compared to healthy counterparts. Studying the effect of MVBs on insulin secretion in physiological and T2D conditions has huge potential. This study provides a strong basis to open new avenues for such future studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信