Prajjwal Pradhan, Bimal Das, Deepak Kumar, Victor Phani, Surajit Kundu
{"title":"淹水胁迫下水稻基因型的解读及产量稳定性分析的最佳条件","authors":"Prajjwal Pradhan, Bimal Das, Deepak Kumar, Victor Phani, Surajit Kundu","doi":"10.1111/jac.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the flood-prone area, the improved high-yielding variety of rice declines its vegetative growth and suffers substantial yield losses due to water stagnation. To address the issue measurement, the present work implemented 45 rice genotypes in a randomized complete block design with three replicates over three consecutive years (2018–2021) across submergence (E1, E3, E5) and optimum environments (E2, E4, E6) to assess the adaptability of these genotypes and identify the most desirable type by various stability indices. A significant genotype × environment interaction (GEI) was found in the combined ANOVA of yield and its component traits. The combined analyses of yield component traits through the multi-trait stability index (MTSI) and yield-stability statistics (<i>YSi</i>) found the most promising genotypes G20 and G32, respectively. The mean grain yield advantage was found in G18 under submerged conditions and G25 across the environments. A highly significant correlation (<i>p</i> < 0.01) exists between the stress tolerance index and yield in both submergence (<i>r</i> = 0.96) and normal (<i>r</i> = 0.90) circumstances. Among genotypes G18, G5 and G19, G20 showed strong stability for grain yield based on univariate stability parameters (YSi, σi2, Wi2, S2d and bi). An AMMI1 biplot analysis indicated that genotypes G37, G45, G32, G31, G27, G28, G19, G17 and G7 exhibited stability for grain yields, with IPCA1 values approaching zero. The GGE biplot analysis on yield was constructed into two mega-environments, where G18 (Narkel Chari), G31 (CR Dhan-500), G9 (Bhasha Manik) and G40 (SS-1) were winners of submergence stress and G25 (Narayan Kamini) was the winner of normal environments.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"211 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering Rice Genotypes Under Submergence Stress and Optimum Condition for Yield Stability Analysis\",\"authors\":\"Prajjwal Pradhan, Bimal Das, Deepak Kumar, Victor Phani, Surajit Kundu\",\"doi\":\"10.1111/jac.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the flood-prone area, the improved high-yielding variety of rice declines its vegetative growth and suffers substantial yield losses due to water stagnation. To address the issue measurement, the present work implemented 45 rice genotypes in a randomized complete block design with three replicates over three consecutive years (2018–2021) across submergence (E1, E3, E5) and optimum environments (E2, E4, E6) to assess the adaptability of these genotypes and identify the most desirable type by various stability indices. A significant genotype × environment interaction (GEI) was found in the combined ANOVA of yield and its component traits. The combined analyses of yield component traits through the multi-trait stability index (MTSI) and yield-stability statistics (<i>YSi</i>) found the most promising genotypes G20 and G32, respectively. The mean grain yield advantage was found in G18 under submerged conditions and G25 across the environments. A highly significant correlation (<i>p</i> < 0.01) exists between the stress tolerance index and yield in both submergence (<i>r</i> = 0.96) and normal (<i>r</i> = 0.90) circumstances. Among genotypes G18, G5 and G19, G20 showed strong stability for grain yield based on univariate stability parameters (YSi, σi2, Wi2, S2d and bi). An AMMI1 biplot analysis indicated that genotypes G37, G45, G32, G31, G27, G28, G19, G17 and G7 exhibited stability for grain yields, with IPCA1 values approaching zero. The GGE biplot analysis on yield was constructed into two mega-environments, where G18 (Narkel Chari), G31 (CR Dhan-500), G9 (Bhasha Manik) and G40 (SS-1) were winners of submergence stress and G25 (Narayan Kamini) was the winner of normal environments.</p>\\n </div>\",\"PeriodicalId\":14864,\"journal\":{\"name\":\"Journal of Agronomy and Crop Science\",\"volume\":\"211 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agronomy and Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jac.70005\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.70005","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Deciphering Rice Genotypes Under Submergence Stress and Optimum Condition for Yield Stability Analysis
In the flood-prone area, the improved high-yielding variety of rice declines its vegetative growth and suffers substantial yield losses due to water stagnation. To address the issue measurement, the present work implemented 45 rice genotypes in a randomized complete block design with three replicates over three consecutive years (2018–2021) across submergence (E1, E3, E5) and optimum environments (E2, E4, E6) to assess the adaptability of these genotypes and identify the most desirable type by various stability indices. A significant genotype × environment interaction (GEI) was found in the combined ANOVA of yield and its component traits. The combined analyses of yield component traits through the multi-trait stability index (MTSI) and yield-stability statistics (YSi) found the most promising genotypes G20 and G32, respectively. The mean grain yield advantage was found in G18 under submerged conditions and G25 across the environments. A highly significant correlation (p < 0.01) exists between the stress tolerance index and yield in both submergence (r = 0.96) and normal (r = 0.90) circumstances. Among genotypes G18, G5 and G19, G20 showed strong stability for grain yield based on univariate stability parameters (YSi, σi2, Wi2, S2d and bi). An AMMI1 biplot analysis indicated that genotypes G37, G45, G32, G31, G27, G28, G19, G17 and G7 exhibited stability for grain yields, with IPCA1 values approaching zero. The GGE biplot analysis on yield was constructed into two mega-environments, where G18 (Narkel Chari), G31 (CR Dhan-500), G9 (Bhasha Manik) and G40 (SS-1) were winners of submergence stress and G25 (Narayan Kamini) was the winner of normal environments.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.