Xue Chen, Haopeng Wan, Lijuan Lu, Ran Li, Bo Sun, Juan Ren
{"title":"PLGA-PEG-c(RGDfK)-Kushenol E胶束具有靶向卵巢癌的治疗潜力","authors":"Xue Chen, Haopeng Wan, Lijuan Lu, Ran Li, Bo Sun, Juan Ren","doi":"10.1049/nbt2/7136323","DOIUrl":null,"url":null,"abstract":"<div>\n <p><b>Background:</b> As a naturally derived inhibitor of autophagy, Kushenol E (KE) is a biprenylated flavonoid and is isolated from <i>Sophora flavescens</i>, which has been used for the treatment of cancer, hepatitis, and skin diseases. However, KE, as a poorly soluble drug, exhibited strong autophagy regulating activity in in vitro cancer cell lines, but no related studies have reported its antiovarian cancer property. Therefore, it is very beneficial to enhance the antineoplastic properties of KE by establishing an ovarian tumor-targeting nanoparticle system modified with tumor-homing c(RGDfK) peptides.</p>\n <p><b>Materials and Methods:</b> In the current study, poly(lactic-co-glycolic acid)-poly(ethylene glycol)-modified with cyclic RGDfK peptide (PLGA-PEG-c(RGDfK))-KE micelles (PPCKM) were prepared to overcome the poor water solubility of KE to meet the requirement of tumor-active targeting. The effect of PPCKM on ovarian cancer was evaluated on SKOV-3 cells and xenograft models in BALB/c nude mice.</p>\n <p><b>Results:</b> The PPCKM showed a higher drug cumulative release ratio (82.16 ± 7.69% vs. 34.96 ± 3.05%, at 1.5 h) with good morphology, particle size (93.41 ± 2.84 nm), and entrapment efficiency (89.7% ± 1.3%). The cell viability, migration, and apoptosis analysis of SKOV-3 cells demonstrated that PPCKM retained potent antitumor effects and promoted apoptosis at early and advanced stages with concentration-dependent. Based on the establishment of xenograft models in BALB/c nude mice, we discovered that PPCKM reduced tumor volume and weight, inhibited proliferating cell nuclear antigen (PCNA) and Ki67 expression, as well as promoted apoptosis by targeting the tumor site.</p>\n <p><b>Conclusion:</b> The findings in this study suggest that PPCKM may serve as an effective therapeutic option for ovarian cancer.</p>\n </div>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"2024 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2/7136323","citationCount":"0","resultStr":"{\"title\":\"PLGA-PEG-c(RGDfK)-Kushenol E Micelles With a Therapeutic Potential for Targeting Ovarian Cancer\",\"authors\":\"Xue Chen, Haopeng Wan, Lijuan Lu, Ran Li, Bo Sun, Juan Ren\",\"doi\":\"10.1049/nbt2/7136323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p><b>Background:</b> As a naturally derived inhibitor of autophagy, Kushenol E (KE) is a biprenylated flavonoid and is isolated from <i>Sophora flavescens</i>, which has been used for the treatment of cancer, hepatitis, and skin diseases. However, KE, as a poorly soluble drug, exhibited strong autophagy regulating activity in in vitro cancer cell lines, but no related studies have reported its antiovarian cancer property. Therefore, it is very beneficial to enhance the antineoplastic properties of KE by establishing an ovarian tumor-targeting nanoparticle system modified with tumor-homing c(RGDfK) peptides.</p>\\n <p><b>Materials and Methods:</b> In the current study, poly(lactic-co-glycolic acid)-poly(ethylene glycol)-modified with cyclic RGDfK peptide (PLGA-PEG-c(RGDfK))-KE micelles (PPCKM) were prepared to overcome the poor water solubility of KE to meet the requirement of tumor-active targeting. The effect of PPCKM on ovarian cancer was evaluated on SKOV-3 cells and xenograft models in BALB/c nude mice.</p>\\n <p><b>Results:</b> The PPCKM showed a higher drug cumulative release ratio (82.16 ± 7.69% vs. 34.96 ± 3.05%, at 1.5 h) with good morphology, particle size (93.41 ± 2.84 nm), and entrapment efficiency (89.7% ± 1.3%). The cell viability, migration, and apoptosis analysis of SKOV-3 cells demonstrated that PPCKM retained potent antitumor effects and promoted apoptosis at early and advanced stages with concentration-dependent. Based on the establishment of xenograft models in BALB/c nude mice, we discovered that PPCKM reduced tumor volume and weight, inhibited proliferating cell nuclear antigen (PCNA) and Ki67 expression, as well as promoted apoptosis by targeting the tumor site.</p>\\n <p><b>Conclusion:</b> The findings in this study suggest that PPCKM may serve as an effective therapeutic option for ovarian cancer.</p>\\n </div>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2/7136323\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2/7136323\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2/7136323","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
背景:苦参酚E (Kushenol E, KE)是一种天然衍生的自噬抑制剂,是从苦参中分离出来的双烯基类黄酮,已被用于治疗癌症、肝炎和皮肤病。然而,KE作为一种难溶性药物,在体外癌细胞系中表现出较强的自噬调节活性,但其抗卵巢癌特性尚未见相关研究报道。因此,建立肿瘤归巢c(RGDfK)肽修饰的卵巢肿瘤靶向纳米颗粒体系,对增强KE的抗肿瘤特性非常有益。材料与方法:本研究制备了环RGDfK肽修饰聚(乳酸-羟基乙酸)-聚乙二醇(PLGA-PEG-c(RGDfK))-KE胶束(PPCKM),克服KE水溶性差的缺点,满足肿瘤活性靶向的要求。在BALB/c裸鼠SKOV-3细胞和异种移植瘤模型上评价PPCKM对卵巢癌的作用。结果:PPCKM具有较高的药物累积释放比(82.16±7.69% vs. 34.96±3.05%,在1.5 h),具有良好的形貌、粒径(93.41±2.84 nm)和包封效率(89.7%±1.3%)。对SKOV-3细胞的细胞活力、迁移和凋亡分析表明,PPCKM在早期和晚期保留了有效的抗肿瘤作用,并具有浓度依赖性。通过BALB/c裸鼠异种移植模型的建立,我们发现PPCKM可以减少肿瘤体积和重量,抑制增殖细胞核抗原(PCNA)和Ki67的表达,并通过靶向肿瘤部位促进细胞凋亡。结论:本研究结果提示PPCKM可能是卵巢癌的有效治疗选择。
PLGA-PEG-c(RGDfK)-Kushenol E Micelles With a Therapeutic Potential for Targeting Ovarian Cancer
Background: As a naturally derived inhibitor of autophagy, Kushenol E (KE) is a biprenylated flavonoid and is isolated from Sophora flavescens, which has been used for the treatment of cancer, hepatitis, and skin diseases. However, KE, as a poorly soluble drug, exhibited strong autophagy regulating activity in in vitro cancer cell lines, but no related studies have reported its antiovarian cancer property. Therefore, it is very beneficial to enhance the antineoplastic properties of KE by establishing an ovarian tumor-targeting nanoparticle system modified with tumor-homing c(RGDfK) peptides.
Materials and Methods: In the current study, poly(lactic-co-glycolic acid)-poly(ethylene glycol)-modified with cyclic RGDfK peptide (PLGA-PEG-c(RGDfK))-KE micelles (PPCKM) were prepared to overcome the poor water solubility of KE to meet the requirement of tumor-active targeting. The effect of PPCKM on ovarian cancer was evaluated on SKOV-3 cells and xenograft models in BALB/c nude mice.
Results: The PPCKM showed a higher drug cumulative release ratio (82.16 ± 7.69% vs. 34.96 ± 3.05%, at 1.5 h) with good morphology, particle size (93.41 ± 2.84 nm), and entrapment efficiency (89.7% ± 1.3%). The cell viability, migration, and apoptosis analysis of SKOV-3 cells demonstrated that PPCKM retained potent antitumor effects and promoted apoptosis at early and advanced stages with concentration-dependent. Based on the establishment of xenograft models in BALB/c nude mice, we discovered that PPCKM reduced tumor volume and weight, inhibited proliferating cell nuclear antigen (PCNA) and Ki67 expression, as well as promoted apoptosis by targeting the tumor site.
Conclusion: The findings in this study suggest that PPCKM may serve as an effective therapeutic option for ovarian cancer.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf