基于分离与融合卷积神经网络的射频指纹识别

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shiyuan Wang, Rugui Yao, Xiaoya Zuo, Ye Fan, Xiongfei Li, Qingyan Guo, Xudong Li
{"title":"基于分离与融合卷积神经网络的射频指纹识别","authors":"Shiyuan Wang,&nbsp;Rugui Yao,&nbsp;Xiaoya Zuo,&nbsp;Ye Fan,&nbsp;Xiongfei Li,&nbsp;Qingyan Guo,&nbsp;Xudong Li","doi":"10.1155/int/4366040","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The unique fingerprints of radio frequency (RF) devices play a critical role in enhancing wireless security, optimizing spectrum management, and facilitating device authentication through accurate identification. However, high-accuracy identification models for radio frequency fingerprint (RFF) often come with a significant number of parameters and complexity, making them less practical for real-world deployment. To address this challenge, our research presents a deep convolutional neural network (CNN)–based architecture known as the separation and fusion convolutional neural network (SFCNN). This architecture focuses on enhancing the identification accuracy of RF devices with limited complexity. The SFCNN incorporates two customizable modules: the separation layer, which is responsible for partitioning the data group size adapted to the channel dimension to keep the low complexity, and the fusion layer which is designed to perform deep channel fusion to enhance feature representation. The proposed SFCNN demonstrates improved accuracy and enhanced robustness with fewer parameters compared to the state-of-the-art techniques, including the baseline CNN, Inception, ResNet, TCN, MSCNN, STFT-CNN, and the ResNet-50-1D. The experimental results based on the public datasets demonstrate an average identification accuracy of 97.78% among 21 USRP transmitters. The number of parameters is reduced by at least 8% compared with all the other models, and the identification accuracy is improved among all the models under any considered scenarios. The trade-off performance between the complexity and accuracy of the proposed SFCNN suggests that it is an effective architecture with remarkable development potential.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4366040","citationCount":"0","resultStr":"{\"title\":\"SFCNN: Separation and Fusion Convolutional Neural Network for Radio Frequency Fingerprint Identification\",\"authors\":\"Shiyuan Wang,&nbsp;Rugui Yao,&nbsp;Xiaoya Zuo,&nbsp;Ye Fan,&nbsp;Xiongfei Li,&nbsp;Qingyan Guo,&nbsp;Xudong Li\",\"doi\":\"10.1155/int/4366040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The unique fingerprints of radio frequency (RF) devices play a critical role in enhancing wireless security, optimizing spectrum management, and facilitating device authentication through accurate identification. However, high-accuracy identification models for radio frequency fingerprint (RFF) often come with a significant number of parameters and complexity, making them less practical for real-world deployment. To address this challenge, our research presents a deep convolutional neural network (CNN)–based architecture known as the separation and fusion convolutional neural network (SFCNN). This architecture focuses on enhancing the identification accuracy of RF devices with limited complexity. The SFCNN incorporates two customizable modules: the separation layer, which is responsible for partitioning the data group size adapted to the channel dimension to keep the low complexity, and the fusion layer which is designed to perform deep channel fusion to enhance feature representation. The proposed SFCNN demonstrates improved accuracy and enhanced robustness with fewer parameters compared to the state-of-the-art techniques, including the baseline CNN, Inception, ResNet, TCN, MSCNN, STFT-CNN, and the ResNet-50-1D. The experimental results based on the public datasets demonstrate an average identification accuracy of 97.78% among 21 USRP transmitters. The number of parameters is reduced by at least 8% compared with all the other models, and the identification accuracy is improved among all the models under any considered scenarios. The trade-off performance between the complexity and accuracy of the proposed SFCNN suggests that it is an effective architecture with remarkable development potential.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4366040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/4366040\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/4366040","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

射频设备独特的指纹在增强无线安全、优化频谱管理、通过准确识别实现设备认证等方面发挥着至关重要的作用。然而,射频指纹(RFF)的高精度识别模型通常带有大量参数和复杂性,使得它们在实际部署中不太实用。为了解决这一挑战,我们的研究提出了一种基于深度卷积神经网络(CNN)的架构,称为分离和融合卷积神经网络(SFCNN)。该架构的重点是在有限的复杂度下提高射频器件的识别精度。SFCNN包含两个可定制的模块:分离层负责划分适合信道维度的数据组大小,以保持低复杂度;融合层负责进行深度信道融合,以增强特征表示。与最先进的技术(包括基线CNN、Inception、ResNet、TCN、MSCNN、STFT-CNN和ResNet-50- 1d)相比,所提出的SFCNN以更少的参数提高了准确性和增强的鲁棒性。基于公共数据集的实验结果表明,在21个USRP发射机中,平均识别准确率为97.78%。与所有其他模型相比,该模型的参数数量至少减少了8%,并且在任何考虑的场景下,所有模型的识别精度都有所提高。从复杂度和精度之间的权衡性能来看,所提出的SFCNN是一种具有显著发展潜力的有效架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SFCNN: Separation and Fusion Convolutional Neural Network for Radio Frequency Fingerprint Identification

SFCNN: Separation and Fusion Convolutional Neural Network for Radio Frequency Fingerprint Identification

The unique fingerprints of radio frequency (RF) devices play a critical role in enhancing wireless security, optimizing spectrum management, and facilitating device authentication through accurate identification. However, high-accuracy identification models for radio frequency fingerprint (RFF) often come with a significant number of parameters and complexity, making them less practical for real-world deployment. To address this challenge, our research presents a deep convolutional neural network (CNN)–based architecture known as the separation and fusion convolutional neural network (SFCNN). This architecture focuses on enhancing the identification accuracy of RF devices with limited complexity. The SFCNN incorporates two customizable modules: the separation layer, which is responsible for partitioning the data group size adapted to the channel dimension to keep the low complexity, and the fusion layer which is designed to perform deep channel fusion to enhance feature representation. The proposed SFCNN demonstrates improved accuracy and enhanced robustness with fewer parameters compared to the state-of-the-art techniques, including the baseline CNN, Inception, ResNet, TCN, MSCNN, STFT-CNN, and the ResNet-50-1D. The experimental results based on the public datasets demonstrate an average identification accuracy of 97.78% among 21 USRP transmitters. The number of parameters is reduced by at least 8% compared with all the other models, and the identification accuracy is improved among all the models under any considered scenarios. The trade-off performance between the complexity and accuracy of the proposed SFCNN suggests that it is an effective architecture with remarkable development potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信