抑制高性能全固态锂电池用富镍单晶阴极的高压化学机械降解

IF 13.1 1区 化学 Q1 Energy
Yirong Xiao , Le Yang , Chaoyuan Zeng , Ze Hua , Shuangquan Qu , Niaz Ahmad , Ruiwen Shao , Wen Yang
{"title":"抑制高性能全固态锂电池用富镍单晶阴极的高压化学机械降解","authors":"Yirong Xiao ,&nbsp;Le Yang ,&nbsp;Chaoyuan Zeng ,&nbsp;Ze Hua ,&nbsp;Shuangquan Qu ,&nbsp;Niaz Ahmad ,&nbsp;Ruiwen Shao ,&nbsp;Wen Yang","doi":"10.1016/j.jechem.2024.10.051","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials (CAMs), primarily caused by severe volume changes, results in significant stress and strain, causes micro-cracks and interfacial contact loss at potentials &gt; 4.3 V(vs. Li/Li<sup>+</sup>). Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxide-based cathodes during electrochemical cycling. Nonetheless, the origin of electrochemical-mechanical damage remains unclear. Herein, We have developed a multifunctional PEG-based soft buffer layer (SBL) on the surface of carbon black (CB). This layer functions as a percolation network in the single crystal LiNi<sub>0.83</sub>Co<sub>0.07</sub>Mn<sub>0.1</sub>O<sub>2</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl composite cathode layer, ensuring superior ionic conductivity, reducing void formation and particle cracking, and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries (ASSLBs). High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode. This strain produces lattice stretches, distortions, and curved transition metal oxide layers near the surface, contributing to structural degradation at elevated voltages. Consequently, ASSLBs with a LiNi<sub>0.83</sub>Co<sub>0.07</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode containing LCCB-10 (CB/PEG mass ratio: 100/10) demonstrate a high areal capacity (2.53 mAh g<sup>−1</sup>/0.32 mA g<sup>−1</sup>) and remarkable rate capability (0.58 mAh g<sup>−1</sup> at 1.4 mA g<sup>−1</sup>), with 88% capacity retention over 1000 cycles.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"102 ","pages":"Pages 377-385"},"PeriodicalIF":13.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries\",\"authors\":\"Yirong Xiao ,&nbsp;Le Yang ,&nbsp;Chaoyuan Zeng ,&nbsp;Ze Hua ,&nbsp;Shuangquan Qu ,&nbsp;Niaz Ahmad ,&nbsp;Ruiwen Shao ,&nbsp;Wen Yang\",\"doi\":\"10.1016/j.jechem.2024.10.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials (CAMs), primarily caused by severe volume changes, results in significant stress and strain, causes micro-cracks and interfacial contact loss at potentials &gt; 4.3 V(vs. Li/Li<sup>+</sup>). Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxide-based cathodes during electrochemical cycling. Nonetheless, the origin of electrochemical-mechanical damage remains unclear. Herein, We have developed a multifunctional PEG-based soft buffer layer (SBL) on the surface of carbon black (CB). This layer functions as a percolation network in the single crystal LiNi<sub>0.83</sub>Co<sub>0.07</sub>Mn<sub>0.1</sub>O<sub>2</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl composite cathode layer, ensuring superior ionic conductivity, reducing void formation and particle cracking, and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries (ASSLBs). High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode. This strain produces lattice stretches, distortions, and curved transition metal oxide layers near the surface, contributing to structural degradation at elevated voltages. Consequently, ASSLBs with a LiNi<sub>0.83</sub>Co<sub>0.07</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode containing LCCB-10 (CB/PEG mass ratio: 100/10) demonstrate a high areal capacity (2.53 mAh g<sup>−1</sup>/0.32 mA g<sup>−1</sup>) and remarkable rate capability (0.58 mAh g<sup>−1</sup> at 1.4 mA g<sup>−1</sup>), with 88% capacity retention over 1000 cycles.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"102 \",\"pages\":\"Pages 377-385\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495624007575\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007575","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

硫化物基全固态锂电池对富镍氧化物基正极活性材料(CAMs)的电化学-机械损伤主要是由剧烈的体积变化引起的,导致显著的应力和应变,导致微裂纹和界面接触损失。4.3 V (vs。李/李+)。定量分析cam中的微裂纹和空隙可以揭示富镍氧化物基阴极在电化学循环过程中的降解机理。尽管如此,电化学-机械损伤的起源仍不清楚。在此,我们在炭黑(CB)表面开发了一种基于聚乙二醇的多功能软缓冲层(SBL)。该层在单晶LiNi0.83Co0.07Mn0.1O2和Li6PS5Cl复合阴极层中起到渗透网络的作用,保证了优异的离子电导率,减少了空洞的形成和颗粒的开裂,促进了阴极活性材料在全固态锂电池(ASSLBs)中的均匀利用。高角度环形暗场STEM结合纳米x射线全息成像和等离子体聚焦离子束扫描电镜证实,peg基SBL减轻了阴极中反应非均质性引起的应变。这种应变在表面附近产生晶格拉伸、扭曲和弯曲的过渡金属氧化物层,导致在高电压下结构退化。因此,含有LCCB-10 (CB/PEG质量比:100/10)的LiNi0.83Co0.07Mn0.1O2阴极的asslb具有高的面容量(2.53 mAh g−1/0.32 mA g−1)和显着的倍率容量(0.58 mAh g−1,1.4 mA g−1),在1000次循环中容量保持率为88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries

Suppressing high voltage chemo-mechanical degradation in single crystal nickel-rich cathodes for high-performance all-solid-state lithium batteries
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials (CAMs), primarily caused by severe volume changes, results in significant stress and strain, causes micro-cracks and interfacial contact loss at potentials > 4.3 V(vs. Li/Li+). Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxide-based cathodes during electrochemical cycling. Nonetheless, the origin of electrochemical-mechanical damage remains unclear. Herein, We have developed a multifunctional PEG-based soft buffer layer (SBL) on the surface of carbon black (CB). This layer functions as a percolation network in the single crystal LiNi0.83Co0.07Mn0.1O2 and Li6PS5Cl composite cathode layer, ensuring superior ionic conductivity, reducing void formation and particle cracking, and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries (ASSLBs). High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode. This strain produces lattice stretches, distortions, and curved transition metal oxide layers near the surface, contributing to structural degradation at elevated voltages. Consequently, ASSLBs with a LiNi0.83Co0.07Mn0.1O2 cathode containing LCCB-10 (CB/PEG mass ratio: 100/10) demonstrate a high areal capacity (2.53 mAh g−1/0.32 mA g−1) and remarkable rate capability (0.58 mAh g−1 at 1.4 mA g−1), with 88% capacity retention over 1000 cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信