Liu Xiaofeng, Hu Baofa, Zhuang Jiafu, Chu Ruobo, Su Zhicong, Xie Qinglai
{"title":"高阻隔膜辅助室气体透过率测试装置的分子流模型","authors":"Liu Xiaofeng, Hu Baofa, Zhuang Jiafu, Chu Ruobo, Su Zhicong, Xie Qinglai","doi":"10.1016/j.vacuum.2024.113861","DOIUrl":null,"url":null,"abstract":"<div><div>The oxygen barrier test of plastic film is an important step in the sealing and preservation process of food and drugs, and the system leakage is pivotal factor of the test device that affecting the efficiency and accuracy. In order to reduce the impact of system leakage on the oxygen barrier detection of plastic film, a test device with an auxiliary seal on the outer layer is designed by using series dual sealing structure technology. Based on the molecular flow states hypothesis, according to the conservation of gas throughput and the invariance of flow resistance, a mathematical model and simulation platform for permeability test of flexible packaging materials with high barrier with outer auxiliary sealing chamber and forward leakage are established. By using Laplace transform method, the analytical solutions and corresponding characteristics of the pressure and leakage rate changes in the inner and outer sealing chamber are discussed, and the equivalent test time expression of the forward leakage test device is derived. The simulation and measured results show that the equivalent test time of the test device with the outer auxiliary sealing chamber is much longer than 24 h, and the test results of the pressure change of the inner sealing chamber are the same as the ideal leak-free system. Compared with the single sealing structure test device, the test error of the same high barrier film permeability test is negligible. By using the test device with an auxiliary sealing chamber, the oxygen barrier property can be accurately measured without any leak measurement and correction.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113861"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular flow model of gas transmission rate test device with auxiliary chamber for high barrier film\",\"authors\":\"Liu Xiaofeng, Hu Baofa, Zhuang Jiafu, Chu Ruobo, Su Zhicong, Xie Qinglai\",\"doi\":\"10.1016/j.vacuum.2024.113861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The oxygen barrier test of plastic film is an important step in the sealing and preservation process of food and drugs, and the system leakage is pivotal factor of the test device that affecting the efficiency and accuracy. In order to reduce the impact of system leakage on the oxygen barrier detection of plastic film, a test device with an auxiliary seal on the outer layer is designed by using series dual sealing structure technology. Based on the molecular flow states hypothesis, according to the conservation of gas throughput and the invariance of flow resistance, a mathematical model and simulation platform for permeability test of flexible packaging materials with high barrier with outer auxiliary sealing chamber and forward leakage are established. By using Laplace transform method, the analytical solutions and corresponding characteristics of the pressure and leakage rate changes in the inner and outer sealing chamber are discussed, and the equivalent test time expression of the forward leakage test device is derived. The simulation and measured results show that the equivalent test time of the test device with the outer auxiliary sealing chamber is much longer than 24 h, and the test results of the pressure change of the inner sealing chamber are the same as the ideal leak-free system. Compared with the single sealing structure test device, the test error of the same high barrier film permeability test is negligible. By using the test device with an auxiliary sealing chamber, the oxygen barrier property can be accurately measured without any leak measurement and correction.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"232 \",\"pages\":\"Article 113861\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24009072\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24009072","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Molecular flow model of gas transmission rate test device with auxiliary chamber for high barrier film
The oxygen barrier test of plastic film is an important step in the sealing and preservation process of food and drugs, and the system leakage is pivotal factor of the test device that affecting the efficiency and accuracy. In order to reduce the impact of system leakage on the oxygen barrier detection of plastic film, a test device with an auxiliary seal on the outer layer is designed by using series dual sealing structure technology. Based on the molecular flow states hypothesis, according to the conservation of gas throughput and the invariance of flow resistance, a mathematical model and simulation platform for permeability test of flexible packaging materials with high barrier with outer auxiliary sealing chamber and forward leakage are established. By using Laplace transform method, the analytical solutions and corresponding characteristics of the pressure and leakage rate changes in the inner and outer sealing chamber are discussed, and the equivalent test time expression of the forward leakage test device is derived. The simulation and measured results show that the equivalent test time of the test device with the outer auxiliary sealing chamber is much longer than 24 h, and the test results of the pressure change of the inner sealing chamber are the same as the ideal leak-free system. Compared with the single sealing structure test device, the test error of the same high barrier film permeability test is negligible. By using the test device with an auxiliary sealing chamber, the oxygen barrier property can be accurately measured without any leak measurement and correction.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.