Jiaming Feng , Yuyin Sun , Wanjun Jin , Ridong Liao
{"title":"盲螺栓组合双管序贯扩曲行为的分析与实验研究","authors":"Jiaming Feng , Yuyin Sun , Wanjun Jin , Ridong Liao","doi":"10.1016/j.ijsolstr.2024.113158","DOIUrl":null,"url":null,"abstract":"<div><div>Combined bi-tubes are innovatively applied in modern composite blind bolts to provide the clamping force. In this study, the sequential flaring-buckling behavior of combined bi-tubes under axial compression on expanding dies was experimentally and analytically investigated. First, axial compression tests were performed on bi-tubes in three different dimension groups. Based on the test results, deformation modes and force–displacement curves were obtained to assess the specific energy absorption (<em>SEA</em>), clamping energy (<em>E<sub>CL</sub></em>), and energy transfer ratio (<em>ETR</em>). The results show that bi-tubes have superior energy-absorbing capacity and clamping efficiency. <em>SEA</em> can reach 21 kJ/kg, and the <em>E<sub>CL</sub></em> accounts for 50 ± 6 % of the total energy dissipated. Afterwards, a theoretical solution for flaring-buckling bi-tubes, which involves the flaring forming force, friction, and critical buckling force, was derived on the basis of an equal-thickness circular tube. A comparison of forces and deformation modes from analytical and experimental approaches leads to the observations that the analytical theory can assess the sequential flaring-buckling bi-tubes within acceptable proximity, the maximum deviations of flaring forming forces and critical buckling forces being 3.3 % and 6.6 %, and that it can effectively predict diverse deformation modes, i.e., a single bell-shaped bulb on the clamped structure, an upper bulb close to the platen, or double bulbs. This study is expected to provide guidance for the optimal design of the clamping structure on aircraft and automobiles.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"308 ","pages":"Article 113158"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and experimental studies on the sequential flaring-buckling behavior of combined bi-tubes in blind bolts\",\"authors\":\"Jiaming Feng , Yuyin Sun , Wanjun Jin , Ridong Liao\",\"doi\":\"10.1016/j.ijsolstr.2024.113158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Combined bi-tubes are innovatively applied in modern composite blind bolts to provide the clamping force. In this study, the sequential flaring-buckling behavior of combined bi-tubes under axial compression on expanding dies was experimentally and analytically investigated. First, axial compression tests were performed on bi-tubes in three different dimension groups. Based on the test results, deformation modes and force–displacement curves were obtained to assess the specific energy absorption (<em>SEA</em>), clamping energy (<em>E<sub>CL</sub></em>), and energy transfer ratio (<em>ETR</em>). The results show that bi-tubes have superior energy-absorbing capacity and clamping efficiency. <em>SEA</em> can reach 21 kJ/kg, and the <em>E<sub>CL</sub></em> accounts for 50 ± 6 % of the total energy dissipated. Afterwards, a theoretical solution for flaring-buckling bi-tubes, which involves the flaring forming force, friction, and critical buckling force, was derived on the basis of an equal-thickness circular tube. A comparison of forces and deformation modes from analytical and experimental approaches leads to the observations that the analytical theory can assess the sequential flaring-buckling bi-tubes within acceptable proximity, the maximum deviations of flaring forming forces and critical buckling forces being 3.3 % and 6.6 %, and that it can effectively predict diverse deformation modes, i.e., a single bell-shaped bulb on the clamped structure, an upper bulb close to the platen, or double bulbs. This study is expected to provide guidance for the optimal design of the clamping structure on aircraft and automobiles.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"308 \",\"pages\":\"Article 113158\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768324005171\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324005171","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Analytical and experimental studies on the sequential flaring-buckling behavior of combined bi-tubes in blind bolts
Combined bi-tubes are innovatively applied in modern composite blind bolts to provide the clamping force. In this study, the sequential flaring-buckling behavior of combined bi-tubes under axial compression on expanding dies was experimentally and analytically investigated. First, axial compression tests were performed on bi-tubes in three different dimension groups. Based on the test results, deformation modes and force–displacement curves were obtained to assess the specific energy absorption (SEA), clamping energy (ECL), and energy transfer ratio (ETR). The results show that bi-tubes have superior energy-absorbing capacity and clamping efficiency. SEA can reach 21 kJ/kg, and the ECL accounts for 50 ± 6 % of the total energy dissipated. Afterwards, a theoretical solution for flaring-buckling bi-tubes, which involves the flaring forming force, friction, and critical buckling force, was derived on the basis of an equal-thickness circular tube. A comparison of forces and deformation modes from analytical and experimental approaches leads to the observations that the analytical theory can assess the sequential flaring-buckling bi-tubes within acceptable proximity, the maximum deviations of flaring forming forces and critical buckling forces being 3.3 % and 6.6 %, and that it can effectively predict diverse deformation modes, i.e., a single bell-shaped bulb on the clamped structure, an upper bulb close to the platen, or double bulbs. This study is expected to provide guidance for the optimal design of the clamping structure on aircraft and automobiles.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.