{"title":"合成修饰的混合相逆尖晶石CuFe2O4磁性纳米颗粒:光催化应用的结构、物理和电化学性质","authors":"Devanshi Zala , Abhijit Ray","doi":"10.1016/j.physb.2024.416770","DOIUrl":null,"url":null,"abstract":"<div><div>Copper ferrite nanoparticles with crystallite sizes between 21.8 and 27.0 nm are developed by modified co-precipitation (C), two-step hydrothermal (H), and polymer-assisted sol-gel (S) methods. The synthetic conditions caused a structure and morphology variation, resulting in their optoelectrical and electrochemical properties becoming markedly different for specific photocatalytic applications. The nanoparticles are p-type semiconducting with direct optical band-gaps between 2.06 and 2.65 eV and carrier concentrations between 10<sup>17</sup> ∼10<sup>18</sup> cm<sup>−3</sup>. Magnetization studies demonstrate that the C-sample exhibits saturation magnetization of 32.44 emu/g nearly double as compared to that of H-sample (16.4 emu/g); however, the latter shows the highest coercivity. Impedance spectroscopy reveals faster electron transfer kinetics across the grain boundaries in the S-sample. The pellets prepared from C- and S- samples have larger dielectric constants and better oxygen ion-led conductivity owing to their larger grain size. Density Functional Theory-based calculation shows that oxygen ion conductivity plays a vital role in hole transport and thus an enhancement in the photocatalytic properties. Photocatalytic activity in the H-sample is superior with a degree of methylene blue dye degradation of 55 % in 2 h and a faster rate kinetics of 0.004 min<sup>−1</sup> in the first hour under simulated sunlight.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"699 ","pages":"Article 416770"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetically modified mixed phase inverse spinel CuFe2O4 magnetic nanoparticles: Structure, physical, and electrochemical properties for photocatalytic applications\",\"authors\":\"Devanshi Zala , Abhijit Ray\",\"doi\":\"10.1016/j.physb.2024.416770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Copper ferrite nanoparticles with crystallite sizes between 21.8 and 27.0 nm are developed by modified co-precipitation (C), two-step hydrothermal (H), and polymer-assisted sol-gel (S) methods. The synthetic conditions caused a structure and morphology variation, resulting in their optoelectrical and electrochemical properties becoming markedly different for specific photocatalytic applications. The nanoparticles are p-type semiconducting with direct optical band-gaps between 2.06 and 2.65 eV and carrier concentrations between 10<sup>17</sup> ∼10<sup>18</sup> cm<sup>−3</sup>. Magnetization studies demonstrate that the C-sample exhibits saturation magnetization of 32.44 emu/g nearly double as compared to that of H-sample (16.4 emu/g); however, the latter shows the highest coercivity. Impedance spectroscopy reveals faster electron transfer kinetics across the grain boundaries in the S-sample. The pellets prepared from C- and S- samples have larger dielectric constants and better oxygen ion-led conductivity owing to their larger grain size. Density Functional Theory-based calculation shows that oxygen ion conductivity plays a vital role in hole transport and thus an enhancement in the photocatalytic properties. Photocatalytic activity in the H-sample is superior with a degree of methylene blue dye degradation of 55 % in 2 h and a faster rate kinetics of 0.004 min<sup>−1</sup> in the first hour under simulated sunlight.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"699 \",\"pages\":\"Article 416770\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624011116\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624011116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Synthetically modified mixed phase inverse spinel CuFe2O4 magnetic nanoparticles: Structure, physical, and electrochemical properties for photocatalytic applications
Copper ferrite nanoparticles with crystallite sizes between 21.8 and 27.0 nm are developed by modified co-precipitation (C), two-step hydrothermal (H), and polymer-assisted sol-gel (S) methods. The synthetic conditions caused a structure and morphology variation, resulting in their optoelectrical and electrochemical properties becoming markedly different for specific photocatalytic applications. The nanoparticles are p-type semiconducting with direct optical band-gaps between 2.06 and 2.65 eV and carrier concentrations between 1017 ∼1018 cm−3. Magnetization studies demonstrate that the C-sample exhibits saturation magnetization of 32.44 emu/g nearly double as compared to that of H-sample (16.4 emu/g); however, the latter shows the highest coercivity. Impedance spectroscopy reveals faster electron transfer kinetics across the grain boundaries in the S-sample. The pellets prepared from C- and S- samples have larger dielectric constants and better oxygen ion-led conductivity owing to their larger grain size. Density Functional Theory-based calculation shows that oxygen ion conductivity plays a vital role in hole transport and thus an enhancement in the photocatalytic properties. Photocatalytic activity in the H-sample is superior with a degree of methylene blue dye degradation of 55 % in 2 h and a faster rate kinetics of 0.004 min−1 in the first hour under simulated sunlight.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces