无稳定剂的方波脉冲沉积法制备金纳米颗粒以提高乙醇电氧化的催化性能

Setia Budi , Aulia Siti Pathoni , Annisa Auliya , Suci Winarsih , Mohammad Hamzah Fauzi , Yusmaniar , Babay Asih Suliasih , Hilman Syafei
{"title":"无稳定剂的方波脉冲沉积法制备金纳米颗粒以提高乙醇电氧化的催化性能","authors":"Setia Budi ,&nbsp;Aulia Siti Pathoni ,&nbsp;Annisa Auliya ,&nbsp;Suci Winarsih ,&nbsp;Mohammad Hamzah Fauzi ,&nbsp;Yusmaniar ,&nbsp;Babay Asih Suliasih ,&nbsp;Hilman Syafei","doi":"10.1016/j.matre.2024.100294","DOIUrl":null,"url":null,"abstract":"<div><div>The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources. Ethanol, a renewable biomass-derived fuel, is a promising alternative due to its availability and high energy density. This study investigates the synthesis of gold nanoparticles (Au NPs) via a square-wave pulse deposition technique, aiming to enhance catalytic activity for ethanol electrooxidation. By varying pulse durations, we were able to exert precise control over Au NP size and distribution without stabilizing agents. Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase. Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area. The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm<sup>−2</sup> and a Tafel slope of 78 mV dec<sup>−1</sup>, indicating superior catalytic performance and reaction kinetics. Additionally, the Au NPs showed high resistance to poisoning, as evidenced by a low <em>j</em><sub>b</sub>/<em>j</em><sub>f</sub> ratio of 0.28 and stable chronoamperometric response. These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier.</div></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"4 4","pages":"Article 100294"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient stabilizing agent-free synthesis of gold nanoparticles via square-wave pulse deposition for enhanced catalytic performance in ethanol electrooxidation\",\"authors\":\"Setia Budi ,&nbsp;Aulia Siti Pathoni ,&nbsp;Annisa Auliya ,&nbsp;Suci Winarsih ,&nbsp;Mohammad Hamzah Fauzi ,&nbsp;Yusmaniar ,&nbsp;Babay Asih Suliasih ,&nbsp;Hilman Syafei\",\"doi\":\"10.1016/j.matre.2024.100294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources. Ethanol, a renewable biomass-derived fuel, is a promising alternative due to its availability and high energy density. This study investigates the synthesis of gold nanoparticles (Au NPs) via a square-wave pulse deposition technique, aiming to enhance catalytic activity for ethanol electrooxidation. By varying pulse durations, we were able to exert precise control over Au NP size and distribution without stabilizing agents. Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase. Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area. The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm<sup>−2</sup> and a Tafel slope of 78 mV dec<sup>−1</sup>, indicating superior catalytic performance and reaction kinetics. Additionally, the Au NPs showed high resistance to poisoning, as evidenced by a low <em>j</em><sub>b</sub>/<em>j</em><sub>f</sub> ratio of 0.28 and stable chronoamperometric response. These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier.</div></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"4 4\",\"pages\":\"Article 100294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935824000673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935824000673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

紧迫的环境问题和化石燃料储备的枯竭要求向可持续能源过渡。乙醇是一种可再生的生物质衍生燃料,由于其可用性和高能量密度,是一种很有前途的替代品。本研究利用方波脉冲沉积技术合成金纳米颗粒(Au NPs),以提高其对乙醇电氧化的催化活性。通过改变脉冲持续时间,我们能够在没有稳定剂的情况下精确控制Au NP的大小和分布。利用场发射扫描电子显微镜和x射线衍射技术进行表征,证实了金属金相簇状纳米颗粒的形成。电化学特性分析表明,在900 ms脉冲时间下合成的Au NPs具有最低的电荷转移电阻和最高的电化学活性表面积。电催化性能测试表明,这些Au NPs的阳极电流密度为2.5 mA cm−2,Tafel斜率为78 mV dec−1,表明了优异的催化性能和反应动力学。此外,Au NPs具有较高的抗中毒能力,其jb/jf比低至0.28,且具有稳定的时温响应。这些发现强调了这种合成方法生产高性能电催化剂的潜力,用于开发乙醇作为环境友好型能源载体的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient stabilizing agent-free synthesis of gold nanoparticles via square-wave pulse deposition for enhanced catalytic performance in ethanol electrooxidation

Efficient stabilizing agent-free synthesis of gold nanoparticles via square-wave pulse deposition for enhanced catalytic performance in ethanol electrooxidation
The pressing environmental concerns and the depletion of fossil fuel reserves necessitate a transition toward sustainable energy sources. Ethanol, a renewable biomass-derived fuel, is a promising alternative due to its availability and high energy density. This study investigates the synthesis of gold nanoparticles (Au NPs) via a square-wave pulse deposition technique, aiming to enhance catalytic activity for ethanol electrooxidation. By varying pulse durations, we were able to exert precise control over Au NP size and distribution without stabilizing agents. Characterization using field emission scanning electron microscopy and X-ray diffraction techniques confirmed the formation of clustered nanoparticles of metallic gold phase. Electrochemical characteristics analyses revealed that Au NPs synthesized with a 900 ms pulse duration exhibited the lowest charge transfer resistance and the highest electrochemically active surface area. The electrocatalytic performance test of these Au NPs demonstrated an anodic current density of 2.5 mA cm−2 and a Tafel slope of 78 mV dec−1, indicating superior catalytic performance and reaction kinetics. Additionally, the Au NPs showed high resistance to poisoning, as evidenced by a low jb/jf ratio of 0.28 and stable chronoamperometric response. These findings underscore the potential of this synthesis method for producing high-performance electrocatalysts utilized in exploiting ethanol's potential as an environmentally friendly energy carrier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信