ComDMFT v.2.0:相关量子材料电子结构的完全自洽从头算GW+EDMFT

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Byungkyun Kang , Patrick Semon , Corey Melnick , Mancheon Han , Seongjun Mo , Hoonkyung Lee , Gabriel Kotliar , Sangkook Choi
{"title":"ComDMFT v.2.0:相关量子材料电子结构的完全自洽从头算GW+EDMFT","authors":"Byungkyun Kang ,&nbsp;Patrick Semon ,&nbsp;Corey Melnick ,&nbsp;Mancheon Han ,&nbsp;Seongjun Mo ,&nbsp;Hoonkyung Lee ,&nbsp;Gabriel Kotliar ,&nbsp;Sangkook Choi","doi":"10.1016/j.cpc.2024.109447","DOIUrl":null,"url":null,"abstract":"<div><div>ComDMFT is a parallel computational package designed to study the electronic structure of correlated quantum materials <em>from first principles</em>. Our approach is based on the combination of <em>first-principles</em> methods and dynamical mean field theories. In version 2.0, we implemented fully-diagrammatic GW+EDMFT <em>from first-principles</em> self-consistently. In this approach, correlated electrons are treated within full GW+EDMFT and the rest are treated within full-GW, seamlessly. This implementation enables the electronic structure calculation of quantum materials with weak, intermediate, and strong electron correlation without prior knowledge of the degree of electron correlation.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"308 ","pages":"Article 109447"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ComDMFT v.2.0: Fully self-consistent ab initio GW+EDMFT for the electronic structure of correlated quantum materials\",\"authors\":\"Byungkyun Kang ,&nbsp;Patrick Semon ,&nbsp;Corey Melnick ,&nbsp;Mancheon Han ,&nbsp;Seongjun Mo ,&nbsp;Hoonkyung Lee ,&nbsp;Gabriel Kotliar ,&nbsp;Sangkook Choi\",\"doi\":\"10.1016/j.cpc.2024.109447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ComDMFT is a parallel computational package designed to study the electronic structure of correlated quantum materials <em>from first principles</em>. Our approach is based on the combination of <em>first-principles</em> methods and dynamical mean field theories. In version 2.0, we implemented fully-diagrammatic GW+EDMFT <em>from first-principles</em> self-consistently. In this approach, correlated electrons are treated within full GW+EDMFT and the rest are treated within full-GW, seamlessly. This implementation enables the electronic structure calculation of quantum materials with weak, intermediate, and strong electron correlation without prior knowledge of the degree of electron correlation.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"308 \",\"pages\":\"Article 109447\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524003709\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003709","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

ComDMFT是一个从第一性原理出发研究相关量子材料电子结构的并行计算包。我们的方法是基于第一性原理方法和动力学平均场理论的结合。在2.0版本中,我们从第一原理自一致地实现了全图解的GW+EDMFT。在这种方法中,相关电子在全GW+EDMFT内处理,其余电子在全GW内无缝处理。这种实现使得计算具有弱、中、强电子相关的量子材料的电子结构不需要事先知道电子相关的程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ComDMFT v.2.0: Fully self-consistent ab initio GW+EDMFT for the electronic structure of correlated quantum materials
ComDMFT is a parallel computational package designed to study the electronic structure of correlated quantum materials from first principles. Our approach is based on the combination of first-principles methods and dynamical mean field theories. In version 2.0, we implemented fully-diagrammatic GW+EDMFT from first-principles self-consistently. In this approach, correlated electrons are treated within full GW+EDMFT and the rest are treated within full-GW, seamlessly. This implementation enables the electronic structure calculation of quantum materials with weak, intermediate, and strong electron correlation without prior knowledge of the degree of electron correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信