非纺织组分(钮扣)热解行为及其人工神经网络动力学分析

IF 5.8 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Samy Yousef , Justas Eimontas , Nerijus Striūgas , Marius Praspaliauskas , Mohammed Ali Abdelnaby
{"title":"非纺织组分(钮扣)热解行为及其人工神经网络动力学分析","authors":"Samy Yousef ,&nbsp;Justas Eimontas ,&nbsp;Nerijus Striūgas ,&nbsp;Marius Praspaliauskas ,&nbsp;Mohammed Ali Abdelnaby","doi":"10.1016/j.jaap.2024.106880","DOIUrl":null,"url":null,"abstract":"<div><div>This research aims to study the pyrolysis behavior of old buttons (main non-textile components) and their kinetic behavior to convert them into energy and their original chemical compounds. The pyrolysis experiments were performed using a thermogravimetric analyzer (TG) on buttons have different composition that were defined using FTIR, elemental and proximate analysis. The composition of the valuable chemicals generated from the pyrolysis process were observed TG-FTIR and GC/MS. The kinetic parameters of the decomposition process were also studied using conventional modeling methods and artificial neural network (ANN) as an advanced machine learning tool. The results showed that polyester, nylon and their blends are the most commonly used materials in button manufacturing. The physical analysis showed that the buttons are very rich in volatile matter content (92.08–99.67 wt%) and completely decompose up to 490 °C at 92–100 wt%. Meanwhile, GC/MS showed that the pyrolysis vapors released from polyester buttons were rich in styrene (84.54 %), while caprolactam (40.30 %) was the dominant compound in nylon buttons versus naphthalene, 1,2,3,4-tetrahydro-2-phenyl- (67.71 %) was the major compound in the mixture sample. The kinetic analysis showed that the activation energy of the degradation process was in the ranges of 152–202 kJ/mol (polyester), 156–201 kJ/mol (nylon), 402–449 kJ/mol (mixed) and the ANN model was successfully trained and predicted the degradation regions of the buttons. Accordingly, pyrolysis of buttons is highly recommended to valorize buttons and convert them into parent chemical compounds.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"186 ","pages":"Article 106880"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolysis behavior of non-textile components (buttons) and their kinetic analysis using artificial neural network\",\"authors\":\"Samy Yousef ,&nbsp;Justas Eimontas ,&nbsp;Nerijus Striūgas ,&nbsp;Marius Praspaliauskas ,&nbsp;Mohammed Ali Abdelnaby\",\"doi\":\"10.1016/j.jaap.2024.106880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research aims to study the pyrolysis behavior of old buttons (main non-textile components) and their kinetic behavior to convert them into energy and their original chemical compounds. The pyrolysis experiments were performed using a thermogravimetric analyzer (TG) on buttons have different composition that were defined using FTIR, elemental and proximate analysis. The composition of the valuable chemicals generated from the pyrolysis process were observed TG-FTIR and GC/MS. The kinetic parameters of the decomposition process were also studied using conventional modeling methods and artificial neural network (ANN) as an advanced machine learning tool. The results showed that polyester, nylon and their blends are the most commonly used materials in button manufacturing. The physical analysis showed that the buttons are very rich in volatile matter content (92.08–99.67 wt%) and completely decompose up to 490 °C at 92–100 wt%. Meanwhile, GC/MS showed that the pyrolysis vapors released from polyester buttons were rich in styrene (84.54 %), while caprolactam (40.30 %) was the dominant compound in nylon buttons versus naphthalene, 1,2,3,4-tetrahydro-2-phenyl- (67.71 %) was the major compound in the mixture sample. The kinetic analysis showed that the activation energy of the degradation process was in the ranges of 152–202 kJ/mol (polyester), 156–201 kJ/mol (nylon), 402–449 kJ/mol (mixed) and the ANN model was successfully trained and predicted the degradation regions of the buttons. Accordingly, pyrolysis of buttons is highly recommended to valorize buttons and convert them into parent chemical compounds.</div></div>\",\"PeriodicalId\":345,\"journal\":{\"name\":\"Journal of Analytical and Applied Pyrolysis\",\"volume\":\"186 \",\"pages\":\"Article 106880\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical and Applied Pyrolysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165237024005357\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024005357","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在研究旧纽扣(主要非纺织成分)的热解行为及其转化为能量的动力学行为及其原始化合物。利用热重分析仪(TG)对不同成分的纽扣进行了热解实验,这些纽扣由FTIR、元素分析和近似分析确定。通过TG-FTIR和GC/MS对热解过程中产生的有价化学物质的组成进行了分析。利用传统的建模方法和人工神经网络作为先进的机器学习工具,研究了分解过程的动力学参数。结果表明,涤纶、尼龙及其混纺是钮扣生产中最常用的材料。物理分析表明,钮扣挥发物含量非常丰富(92.08-99.67 wt%),在92-100 wt%的温度下,到490°C时完全分解。同时,GC/MS分析表明,涤纶扣释放的热解蒸气中含有丰富的苯乙烯(84.54 %),尼龙扣中以己内酰胺(40.30 %)为主,而萘、1,2,3,4-四氢-2-苯基(67.71 %)为主要化合物。动力学分析表明,降解过程的活化能范围为152 ~ 202 kJ/mol(聚酯),156 ~ 201 kJ/mol(尼龙),402 ~ 449 kJ/mol(混合),ANN模型训练成功并预测了纽扣的降解区域。因此,强烈建议对纽扣进行热解,以使纽扣增值并将其转化为母体化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyrolysis behavior of non-textile components (buttons) and their kinetic analysis using artificial neural network
This research aims to study the pyrolysis behavior of old buttons (main non-textile components) and their kinetic behavior to convert them into energy and their original chemical compounds. The pyrolysis experiments were performed using a thermogravimetric analyzer (TG) on buttons have different composition that were defined using FTIR, elemental and proximate analysis. The composition of the valuable chemicals generated from the pyrolysis process were observed TG-FTIR and GC/MS. The kinetic parameters of the decomposition process were also studied using conventional modeling methods and artificial neural network (ANN) as an advanced machine learning tool. The results showed that polyester, nylon and their blends are the most commonly used materials in button manufacturing. The physical analysis showed that the buttons are very rich in volatile matter content (92.08–99.67 wt%) and completely decompose up to 490 °C at 92–100 wt%. Meanwhile, GC/MS showed that the pyrolysis vapors released from polyester buttons were rich in styrene (84.54 %), while caprolactam (40.30 %) was the dominant compound in nylon buttons versus naphthalene, 1,2,3,4-tetrahydro-2-phenyl- (67.71 %) was the major compound in the mixture sample. The kinetic analysis showed that the activation energy of the degradation process was in the ranges of 152–202 kJ/mol (polyester), 156–201 kJ/mol (nylon), 402–449 kJ/mol (mixed) and the ANN model was successfully trained and predicted the degradation regions of the buttons. Accordingly, pyrolysis of buttons is highly recommended to valorize buttons and convert them into parent chemical compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信