基于热力学理论的真空预压全径排水机理研究

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Fu Chen , Aiping Tang
{"title":"基于热力学理论的真空预压全径排水机理研究","authors":"Fu Chen ,&nbsp;Aiping Tang","doi":"10.1016/j.sandf.2024.101542","DOIUrl":null,"url":null,"abstract":"<div><div>Vacuum preloading has been a widely used consolidation method for soft clay ground improvement since the 1980s. Consolidation theory only explains the radial drainage process from soil to prefabricated vertical drains (PVD); however, the complete drainage path mechanism by which water drains vertically through PVD to the upper horizontal sand drainage layer and eventually to vacuum pumps is still unclear, resulting in controversies about vacuum preloading. A large oedometer test was performed to study the complete drainage-path mechanism for vacuum preloading. During vacuum preloading, the soil’s average internal temperature decreased to 5 °C below initial temperature, with the lowest temperate occurring near the PVD, which was 2 °C lower than the outskirt. A complete drainage path mechanism is proposed based on the phenomenon of internal temperature decreases. Water evaporates only in the PVD, and the vertical movement of water in the PVD is caused by a density difference between the gas molecules that is independent of gravity. Finally, the proposed mechanism was used to explain the controversy about vacuum preloading. For example, vacuum should not decay along the PVD, vacuum acting elevation at the top or bottom of the PVD has no effect on the final vacuum preloading effectiveness, there is no unsaturated zone formed, and the groundwater level does not drop during vacuum preloading.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 6","pages":"Article 101542"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on drainage mechanism of complete path for vacuum preloading based on thermodynamics theory\",\"authors\":\"Fu Chen ,&nbsp;Aiping Tang\",\"doi\":\"10.1016/j.sandf.2024.101542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vacuum preloading has been a widely used consolidation method for soft clay ground improvement since the 1980s. Consolidation theory only explains the radial drainage process from soil to prefabricated vertical drains (PVD); however, the complete drainage path mechanism by which water drains vertically through PVD to the upper horizontal sand drainage layer and eventually to vacuum pumps is still unclear, resulting in controversies about vacuum preloading. A large oedometer test was performed to study the complete drainage-path mechanism for vacuum preloading. During vacuum preloading, the soil’s average internal temperature decreased to 5 °C below initial temperature, with the lowest temperate occurring near the PVD, which was 2 °C lower than the outskirt. A complete drainage path mechanism is proposed based on the phenomenon of internal temperature decreases. Water evaporates only in the PVD, and the vertical movement of water in the PVD is caused by a density difference between the gas molecules that is independent of gravity. Finally, the proposed mechanism was used to explain the controversy about vacuum preloading. For example, vacuum should not decay along the PVD, vacuum acting elevation at the top or bottom of the PVD has no effect on the final vacuum preloading effectiveness, there is no unsaturated zone formed, and the groundwater level does not drop during vacuum preloading.</div></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"64 6\",\"pages\":\"Article 101542\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080624001203\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624001203","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

真空预压是20世纪80年代以来广泛应用的软土地基加固方法。固结理论只解释了从土壤到预制垂直排水管的径向排水过程;然而,水通过PVD垂直排入上部水平排砂层并最终排入真空泵的完整排砂路径机制尚不清楚,导致了真空预压的争议。为了研究真空预压的全排水路径机制,进行了大型排水计试验。在真空预压过程中,土壤内部平均温度比初始温度低5℃,其中PVD附近温度最低,比外围温度低2℃。基于内部温度下降现象,提出了一种完整的排水路径机制。水只在PVD中蒸发,水在PVD中的垂直运动是由独立于重力的气体分子之间的密度差引起的。最后,用提出的机理解释了真空预压存在的争议。真空沿PVD不衰减,PVD顶部和底部的真空作用标高对最终的真空预压效果没有影响,真空预压期间不形成非饱和带,地下水位不下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on drainage mechanism of complete path for vacuum preloading based on thermodynamics theory
Vacuum preloading has been a widely used consolidation method for soft clay ground improvement since the 1980s. Consolidation theory only explains the radial drainage process from soil to prefabricated vertical drains (PVD); however, the complete drainage path mechanism by which water drains vertically through PVD to the upper horizontal sand drainage layer and eventually to vacuum pumps is still unclear, resulting in controversies about vacuum preloading. A large oedometer test was performed to study the complete drainage-path mechanism for vacuum preloading. During vacuum preloading, the soil’s average internal temperature decreased to 5 °C below initial temperature, with the lowest temperate occurring near the PVD, which was 2 °C lower than the outskirt. A complete drainage path mechanism is proposed based on the phenomenon of internal temperature decreases. Water evaporates only in the PVD, and the vertical movement of water in the PVD is caused by a density difference between the gas molecules that is independent of gravity. Finally, the proposed mechanism was used to explain the controversy about vacuum preloading. For example, vacuum should not decay along the PVD, vacuum acting elevation at the top or bottom of the PVD has no effect on the final vacuum preloading effectiveness, there is no unsaturated zone formed, and the groundwater level does not drop during vacuum preloading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信