Huezer Viganô Sperandio , Marcelino Santos de Morais , Luciano Cavalcante de Jesus França , Danielle Piuzana Mucida , Reynaldo Campos Santana , Ricardo Siqueira da Silva , Cristiano Reis Rodrigues , Bruno Lopes de Faria , Maria Luiza de Azevedo , Eric Bastos Gorgens
{"title":"结合地理空间数据和人工智能的土地适宜性建模","authors":"Huezer Viganô Sperandio , Marcelino Santos de Morais , Luciano Cavalcante de Jesus França , Danielle Piuzana Mucida , Reynaldo Campos Santana , Ricardo Siqueira da Silva , Cristiano Reis Rodrigues , Bruno Lopes de Faria , Maria Luiza de Azevedo , Eric Bastos Gorgens","doi":"10.1016/j.agsy.2024.104197","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>Sustainable agricultural practices are critical in a world grappling with climate change and pressure on natural resources. Unplanned agricultural expansion often harms ecosystems and the services they provide. Balancing food production with environmental protection demands sophisticated tools like spatial analysis and artificial intelligence to inform land-use decisions.</div></div><div><h3>Objective</h3><div>This study introduces an AI-driven process to assess land suitability for agrosilvopastoral systems, going beyond traditional methods by incorporating a broader spectrum of landscape characteristics. Our approach integrates climate, water resources, soil properties, morphological features, and accessibility to enhance the accuracy of suitability mapping.</div></div><div><h3>Methods</h3><div>We constructed a data cube comprising 100 geospatial layers representing diverse landscape attributes. Field observations from two watersheds in Minas Gerais, Brazil, were used to train and validate a Random Forest classification model. We evaluated the model's accuracy and quantified the influence of each attribute group on suitability determination.</div></div><div><h3>Results</h3><div>Integrating climate, water, edaphic, and morphological attributes significantly improved the model's accuracy and provided a more nuanced understanding of agrosilvopastoral suitability compared to using only soil class, lithology, and slope. Climate and edaphic variables emerged as key drivers of suitability. This approach identified a more constrained, yet potentially more sustainable, distribution of suitable land.</div></div><div><h3>Significance</h3><div>Our findings highlight the need to transition from conventional land suitability assessments towards more holistic, data-driven approaches that consider the complex interplay of environmental factors. This model offers a valuable tool for guiding sustainable land-use planning, potentially mitigating environmental impacts while optimizing agrosilvopastoral production.</div></div>","PeriodicalId":7730,"journal":{"name":"Agricultural Systems","volume":"223 ","pages":"Article 104197"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Land suitability modeling integrating geospatial data and artificial intelligence\",\"authors\":\"Huezer Viganô Sperandio , Marcelino Santos de Morais , Luciano Cavalcante de Jesus França , Danielle Piuzana Mucida , Reynaldo Campos Santana , Ricardo Siqueira da Silva , Cristiano Reis Rodrigues , Bruno Lopes de Faria , Maria Luiza de Azevedo , Eric Bastos Gorgens\",\"doi\":\"10.1016/j.agsy.2024.104197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><div>Sustainable agricultural practices are critical in a world grappling with climate change and pressure on natural resources. Unplanned agricultural expansion often harms ecosystems and the services they provide. Balancing food production with environmental protection demands sophisticated tools like spatial analysis and artificial intelligence to inform land-use decisions.</div></div><div><h3>Objective</h3><div>This study introduces an AI-driven process to assess land suitability for agrosilvopastoral systems, going beyond traditional methods by incorporating a broader spectrum of landscape characteristics. Our approach integrates climate, water resources, soil properties, morphological features, and accessibility to enhance the accuracy of suitability mapping.</div></div><div><h3>Methods</h3><div>We constructed a data cube comprising 100 geospatial layers representing diverse landscape attributes. Field observations from two watersheds in Minas Gerais, Brazil, were used to train and validate a Random Forest classification model. We evaluated the model's accuracy and quantified the influence of each attribute group on suitability determination.</div></div><div><h3>Results</h3><div>Integrating climate, water, edaphic, and morphological attributes significantly improved the model's accuracy and provided a more nuanced understanding of agrosilvopastoral suitability compared to using only soil class, lithology, and slope. Climate and edaphic variables emerged as key drivers of suitability. This approach identified a more constrained, yet potentially more sustainable, distribution of suitable land.</div></div><div><h3>Significance</h3><div>Our findings highlight the need to transition from conventional land suitability assessments towards more holistic, data-driven approaches that consider the complex interplay of environmental factors. This model offers a valuable tool for guiding sustainable land-use planning, potentially mitigating environmental impacts while optimizing agrosilvopastoral production.</div></div>\",\"PeriodicalId\":7730,\"journal\":{\"name\":\"Agricultural Systems\",\"volume\":\"223 \",\"pages\":\"Article 104197\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Systems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308521X24003470\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Systems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308521X24003470","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Land suitability modeling integrating geospatial data and artificial intelligence
Context
Sustainable agricultural practices are critical in a world grappling with climate change and pressure on natural resources. Unplanned agricultural expansion often harms ecosystems and the services they provide. Balancing food production with environmental protection demands sophisticated tools like spatial analysis and artificial intelligence to inform land-use decisions.
Objective
This study introduces an AI-driven process to assess land suitability for agrosilvopastoral systems, going beyond traditional methods by incorporating a broader spectrum of landscape characteristics. Our approach integrates climate, water resources, soil properties, morphological features, and accessibility to enhance the accuracy of suitability mapping.
Methods
We constructed a data cube comprising 100 geospatial layers representing diverse landscape attributes. Field observations from two watersheds in Minas Gerais, Brazil, were used to train and validate a Random Forest classification model. We evaluated the model's accuracy and quantified the influence of each attribute group on suitability determination.
Results
Integrating climate, water, edaphic, and morphological attributes significantly improved the model's accuracy and provided a more nuanced understanding of agrosilvopastoral suitability compared to using only soil class, lithology, and slope. Climate and edaphic variables emerged as key drivers of suitability. This approach identified a more constrained, yet potentially more sustainable, distribution of suitable land.
Significance
Our findings highlight the need to transition from conventional land suitability assessments towards more holistic, data-driven approaches that consider the complex interplay of environmental factors. This model offers a valuable tool for guiding sustainable land-use planning, potentially mitigating environmental impacts while optimizing agrosilvopastoral production.
期刊介绍:
Agricultural Systems is an international journal that deals with interactions - among the components of agricultural systems, among hierarchical levels of agricultural systems, between agricultural and other land use systems, and between agricultural systems and their natural, social and economic environments.
The scope includes the development and application of systems analysis methodologies in the following areas:
Systems approaches in the sustainable intensification of agriculture; pathways for sustainable intensification; crop-livestock integration; farm-level resource allocation; quantification of benefits and trade-offs at farm to landscape levels; integrative, participatory and dynamic modelling approaches for qualitative and quantitative assessments of agricultural systems and decision making;
The interactions between agricultural and non-agricultural landscapes; the multiple services of agricultural systems; food security and the environment;
Global change and adaptation science; transformational adaptations as driven by changes in climate, policy, values and attitudes influencing the design of farming systems;
Development and application of farming systems design tools and methods for impact, scenario and case study analysis; managing the complexities of dynamic agricultural systems; innovation systems and multi stakeholder arrangements that support or promote change and (or) inform policy decisions.