长期接触聚苯乙烯微塑料会打破成骨细胞和破骨细胞分化的平衡,从而引发骨质疏松症

IF 4.8 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Chun Pan , Runyang Hong , Kehan Wang , Yujie Shi , Zhencheng Fan , Tingting Liu , Hao Chen
{"title":"长期接触聚苯乙烯微塑料会打破成骨细胞和破骨细胞分化的平衡,从而引发骨质疏松症","authors":"Chun Pan ,&nbsp;Runyang Hong ,&nbsp;Kehan Wang ,&nbsp;Yujie Shi ,&nbsp;Zhencheng Fan ,&nbsp;Tingting Liu ,&nbsp;Hao Chen","doi":"10.1016/j.tox.2024.154017","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic pollution is becoming more and more serious, and microplastics (MPs) formed by degradation from plastics significantly threaten the health of animals and humans. However, it remains unknown how MPs interfere with bone homeostasis by regulating the function of bone marrow mesenchymal stem cells (BMSCs). In order to simulate the toxic impacts of long-term low-dose MPs on the skeletal system, we constructed a 6-month drinking water model of mice exposed to MPs. We found that the bone microstructure in the femur of mice exposed to MPs was destroyed, the quantity of bone trabeculae decreased sharply and the bone mass decreased significantly, accompanied by the decrease of bone formation and the activation of osteoclasts. In addition, RNA sequencing showed NF-κB pathway was activated in MPs-treated BMSCs, manifested as significantly up-regulated inflammatory factors, accelerated the senescence of BMSCs, and inhibited their osteogenic differentiation and extracellular mineralization. Senescent BMSCs induced by MPs led to the overproduction of RANKL, which contributed to the production of more osteoclasts. Importantly, the administration of NF-κB inhibitors <em>in vivo</em> markedly diminished MPs-induced BMSCs senescence and impaired osteogenic differentiation. Meanwhile, the secretion of RANKL caused by MPs was reversed, and osteoclast formation was significantly reduced. In summary, our data innovatively reveal the core mechanism of MPs in bone balance. By promoting the NF-κB signaling pathway, it significantly accelerates the aging of BMSCs, causes a decrease in bone formation, and promotes osteoclast formation through RANKL.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"510 ","pages":"Article 154017"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chronic exposure to polystyrene microplastics triggers osteoporosis by breaking the balance of osteoblast and osteoclast differentiation\",\"authors\":\"Chun Pan ,&nbsp;Runyang Hong ,&nbsp;Kehan Wang ,&nbsp;Yujie Shi ,&nbsp;Zhencheng Fan ,&nbsp;Tingting Liu ,&nbsp;Hao Chen\",\"doi\":\"10.1016/j.tox.2024.154017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plastic pollution is becoming more and more serious, and microplastics (MPs) formed by degradation from plastics significantly threaten the health of animals and humans. However, it remains unknown how MPs interfere with bone homeostasis by regulating the function of bone marrow mesenchymal stem cells (BMSCs). In order to simulate the toxic impacts of long-term low-dose MPs on the skeletal system, we constructed a 6-month drinking water model of mice exposed to MPs. We found that the bone microstructure in the femur of mice exposed to MPs was destroyed, the quantity of bone trabeculae decreased sharply and the bone mass decreased significantly, accompanied by the decrease of bone formation and the activation of osteoclasts. In addition, RNA sequencing showed NF-κB pathway was activated in MPs-treated BMSCs, manifested as significantly up-regulated inflammatory factors, accelerated the senescence of BMSCs, and inhibited their osteogenic differentiation and extracellular mineralization. Senescent BMSCs induced by MPs led to the overproduction of RANKL, which contributed to the production of more osteoclasts. Importantly, the administration of NF-κB inhibitors <em>in vivo</em> markedly diminished MPs-induced BMSCs senescence and impaired osteogenic differentiation. Meanwhile, the secretion of RANKL caused by MPs was reversed, and osteoclast formation was significantly reduced. In summary, our data innovatively reveal the core mechanism of MPs in bone balance. By promoting the NF-κB signaling pathway, it significantly accelerates the aging of BMSCs, causes a decrease in bone formation, and promotes osteoclast formation through RANKL.</div></div>\",\"PeriodicalId\":23159,\"journal\":{\"name\":\"Toxicology\",\"volume\":\"510 \",\"pages\":\"Article 154017\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300483X24002981\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X24002981","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

塑料污染日益严重,塑料降解形成的微塑料严重威胁着动物和人类的健康。然而,MPs是如何通过调节骨髓间充质干细胞(BMSCs)的功能来干扰骨稳态的尚不清楚。为了模拟长期低剂量MPs对骨骼系统的毒性影响,我们构建了暴露于MPs的小鼠6个月的饮用水模型。我们发现,暴露于MPs的小鼠股骨内的骨微结构被破坏,骨小梁数量急剧减少,骨量明显减少,并伴有骨形成减少和破骨细胞的激活。此外,RNA测序结果显示,mp处理的骨髓间充质干细胞活化NF-κB通路,表现为炎症因子显著上调,加速骨髓间充质干细胞衰老,抑制其成骨分化和细胞外矿化。MPs诱导的衰老骨髓间充质干细胞导致RANKL的过量产生,从而导致更多破骨细胞的产生。重要的是,体内使用NF-κB抑制剂可显著减少mps诱导的骨髓间充质干细胞衰老和成骨分化受损。同时,MPs引起的RANKL分泌逆转,破骨细胞形成明显减少。总之,我们的数据创新性地揭示了MPs在骨平衡中的核心机制。通过促进NF-κB信号通路,显著加速骨髓间充质干细胞老化,导致骨形成减少,并通过RANKL促进破骨细胞形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chronic exposure to polystyrene microplastics triggers osteoporosis by breaking the balance of osteoblast and osteoclast differentiation
Plastic pollution is becoming more and more serious, and microplastics (MPs) formed by degradation from plastics significantly threaten the health of animals and humans. However, it remains unknown how MPs interfere with bone homeostasis by regulating the function of bone marrow mesenchymal stem cells (BMSCs). In order to simulate the toxic impacts of long-term low-dose MPs on the skeletal system, we constructed a 6-month drinking water model of mice exposed to MPs. We found that the bone microstructure in the femur of mice exposed to MPs was destroyed, the quantity of bone trabeculae decreased sharply and the bone mass decreased significantly, accompanied by the decrease of bone formation and the activation of osteoclasts. In addition, RNA sequencing showed NF-κB pathway was activated in MPs-treated BMSCs, manifested as significantly up-regulated inflammatory factors, accelerated the senescence of BMSCs, and inhibited their osteogenic differentiation and extracellular mineralization. Senescent BMSCs induced by MPs led to the overproduction of RANKL, which contributed to the production of more osteoclasts. Importantly, the administration of NF-κB inhibitors in vivo markedly diminished MPs-induced BMSCs senescence and impaired osteogenic differentiation. Meanwhile, the secretion of RANKL caused by MPs was reversed, and osteoclast formation was significantly reduced. In summary, our data innovatively reveal the core mechanism of MPs in bone balance. By promoting the NF-κB signaling pathway, it significantly accelerates the aging of BMSCs, causes a decrease in bone formation, and promotes osteoclast formation through RANKL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicology
Toxicology 医学-毒理学
CiteScore
7.80
自引率
4.40%
发文量
222
审稿时长
23 days
期刊介绍: Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信