不同氩压下激光烧蚀羽流中Li I 670.8 nm自反转和原子分布不均匀性的揭示

IF 3.2 2区 化学 Q1 SPECTROSCOPY
Nusrat Karim , Mathew P. Polek , Andrew M. Casella , David J. Senor , Sivanandan S. Harilal , Elizabeth J. Kautz
{"title":"不同氩压下激光烧蚀羽流中Li I 670.8 nm自反转和原子分布不均匀性的揭示","authors":"Nusrat Karim ,&nbsp;Mathew P. Polek ,&nbsp;Andrew M. Casella ,&nbsp;David J. Senor ,&nbsp;Sivanandan S. Harilal ,&nbsp;Elizabeth J. Kautz","doi":"10.1016/j.sab.2024.107081","DOIUrl":null,"url":null,"abstract":"<div><div>Laser Induced Breakdown Spectroscopy (LIBS) offers a promising rapid detection method for <sup>6,7</sup>Li isotopic analysis. The Li I 670.8 nm provides the largest isotopic shift in the UV-VIS spectral region (<span><math><mo>≈</mo></math></span>15.8 pm). However, Li 670.8 nm transition is a resonance doublet and possesses very high transition probability, making it susceptible to self-absorption and self-reversal, which can affect line width, shape, and overall analytical capabilities. Environmental factors, such as the pressure and type of ambient gas, significantly influence the physical conditions of plasma and its hydrodynamics, thereby impacting the self-reversal phenomenon. In this study, we investigate plasmas generated via nanosecond laser ablation of a LiAlO<sub>2</sub> target with natural isotopic abundance in an inert gas (Ar) environment at pressures ranging from 0.1 to 100 Torr. Complementary fast-gated Li monochromatic imaging and spatially-integrated optical emission spectroscopy were used to explore the relationship between Li atomic distribution and emission gradients in laser-produced plasmas and self-reversal in Li I spectral features. Results highlight that self-reversal is prominent at later times in plasma evolution (greater than 5 μs) for Ar pressure levels between 1 and 100 Torr, due to a significant buildup of Li ground level population at the plume-background gas interface. Conversely, at lower pressures (0.1 Torr or less), rapid plasma expansion without a strong plume-background interface results in the absence of self-reversal in the Li I spectral profiles.</div></div>","PeriodicalId":21890,"journal":{"name":"Spectrochimica Acta Part B: Atomic Spectroscopy","volume":"223 ","pages":"Article 107081"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Li I 670.8 nm self-reversal and atomic distribution inhomogeneity in laser ablation plumes under varying argon pressures\",\"authors\":\"Nusrat Karim ,&nbsp;Mathew P. Polek ,&nbsp;Andrew M. Casella ,&nbsp;David J. Senor ,&nbsp;Sivanandan S. Harilal ,&nbsp;Elizabeth J. Kautz\",\"doi\":\"10.1016/j.sab.2024.107081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Laser Induced Breakdown Spectroscopy (LIBS) offers a promising rapid detection method for <sup>6,7</sup>Li isotopic analysis. The Li I 670.8 nm provides the largest isotopic shift in the UV-VIS spectral region (<span><math><mo>≈</mo></math></span>15.8 pm). However, Li 670.8 nm transition is a resonance doublet and possesses very high transition probability, making it susceptible to self-absorption and self-reversal, which can affect line width, shape, and overall analytical capabilities. Environmental factors, such as the pressure and type of ambient gas, significantly influence the physical conditions of plasma and its hydrodynamics, thereby impacting the self-reversal phenomenon. In this study, we investigate plasmas generated via nanosecond laser ablation of a LiAlO<sub>2</sub> target with natural isotopic abundance in an inert gas (Ar) environment at pressures ranging from 0.1 to 100 Torr. Complementary fast-gated Li monochromatic imaging and spatially-integrated optical emission spectroscopy were used to explore the relationship between Li atomic distribution and emission gradients in laser-produced plasmas and self-reversal in Li I spectral features. Results highlight that self-reversal is prominent at later times in plasma evolution (greater than 5 μs) for Ar pressure levels between 1 and 100 Torr, due to a significant buildup of Li ground level population at the plume-background gas interface. Conversely, at lower pressures (0.1 Torr or less), rapid plasma expansion without a strong plume-background interface results in the absence of self-reversal in the Li I spectral profiles.</div></div>\",\"PeriodicalId\":21890,\"journal\":{\"name\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"volume\":\"223 \",\"pages\":\"Article 107081\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica Acta Part B: Atomic Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S058485472400226X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part B: Atomic Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S058485472400226X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

激光诱导击穿光谱(LIBS)为6,7 li同位素分析提供了一种很有前途的快速检测方法。Li I 670.8 nm在UV-VIS光谱区提供最大的同位素位移(≈15.8 pm)。然而,Li 670.8 nm的跃迁是共振双重态,具有非常高的跃迁概率,容易受到自吸收和自反转的影响,从而影响线宽、形状和整体分析能力。环境因素,如环境气体的压力和类型,会显著影响等离子体的物理条件及其流体动力学,从而影响自反转现象。在这项研究中,我们研究了在0.1至100 Torr的惰性气体(Ar)环境下,通过纳秒激光烧蚀具有天然同位素丰度的LiAlO2靶产生的等离子体。利用互补快速门控Li单色成像和空间集成光学发射光谱研究了激光等离子体中Li原子分布与发射梯度的关系以及Li I光谱特征的自反转。结果表明,当Ar压力水平在1 ~ 100 Torr之间时,等离子体演化的后期(大于5 μs)出现了显著的自反转,这是由于羽流-背景气体界面上Li的地面能级聚集显著导致的。相反,在较低的压力下(0.1托或更低),没有强大的羽流背景界面的快速等离子体膨胀导致Li I光谱剖面中没有自反转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling Li I 670.8 nm self-reversal and atomic distribution inhomogeneity in laser ablation plumes under varying argon pressures

Unraveling Li I 670.8 nm self-reversal and atomic distribution inhomogeneity in laser ablation plumes under varying argon pressures
Laser Induced Breakdown Spectroscopy (LIBS) offers a promising rapid detection method for 6,7Li isotopic analysis. The Li I 670.8 nm provides the largest isotopic shift in the UV-VIS spectral region (15.8 pm). However, Li 670.8 nm transition is a resonance doublet and possesses very high transition probability, making it susceptible to self-absorption and self-reversal, which can affect line width, shape, and overall analytical capabilities. Environmental factors, such as the pressure and type of ambient gas, significantly influence the physical conditions of plasma and its hydrodynamics, thereby impacting the self-reversal phenomenon. In this study, we investigate plasmas generated via nanosecond laser ablation of a LiAlO2 target with natural isotopic abundance in an inert gas (Ar) environment at pressures ranging from 0.1 to 100 Torr. Complementary fast-gated Li monochromatic imaging and spatially-integrated optical emission spectroscopy were used to explore the relationship between Li atomic distribution and emission gradients in laser-produced plasmas and self-reversal in Li I spectral features. Results highlight that self-reversal is prominent at later times in plasma evolution (greater than 5 μs) for Ar pressure levels between 1 and 100 Torr, due to a significant buildup of Li ground level population at the plume-background gas interface. Conversely, at lower pressures (0.1 Torr or less), rapid plasma expansion without a strong plume-background interface results in the absence of self-reversal in the Li I spectral profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
12.10%
发文量
173
审稿时长
81 days
期刊介绍: Spectrochimica Acta Part B: Atomic Spectroscopy, is intended for the rapid publication of both original work and reviews in the following fields: Atomic Emission (AES), Atomic Absorption (AAS) and Atomic Fluorescence (AFS) spectroscopy; Mass Spectrometry (MS) for inorganic analysis covering Spark Source (SS-MS), Inductively Coupled Plasma (ICP-MS), Glow Discharge (GD-MS), and Secondary Ion Mass Spectrometry (SIMS). Laser induced atomic spectroscopy for inorganic analysis, including non-linear optical laser spectroscopy, covering Laser Enhanced Ionization (LEI), Laser Induced Fluorescence (LIF), Resonance Ionization Spectroscopy (RIS) and Resonance Ionization Mass Spectrometry (RIMS); Laser Induced Breakdown Spectroscopy (LIBS); Cavity Ringdown Spectroscopy (CRDS), Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy (LA-ICP-AES) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). X-ray spectrometry, X-ray Optics and Microanalysis, including X-ray fluorescence spectrometry (XRF) and related techniques, in particular Total-reflection X-ray Fluorescence Spectrometry (TXRF), and Synchrotron Radiation-excited Total reflection XRF (SR-TXRF). Manuscripts dealing with (i) fundamentals, (ii) methodology development, (iii)instrumentation, and (iv) applications, can be submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信