使用机器学习算法预测Trombe太阳能墙系统的室温

Seyed Hossein Hashemi , Zahra Besharati , Seyed Abdolrasoul Hashemi , Seyed Ali Hashemi , Aziz Babapoor
{"title":"使用机器学习算法预测Trombe太阳能墙系统的室温","authors":"Seyed Hossein Hashemi ,&nbsp;Zahra Besharati ,&nbsp;Seyed Abdolrasoul Hashemi ,&nbsp;Seyed Ali Hashemi ,&nbsp;Aziz Babapoor","doi":"10.1016/j.enss.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>A Trombe wall-heating system is used to absorb solar energy to heat buildings. Different parameters affect the system performance for optimal heating. This study evaluated the performance of four machine learning algorithms—linear regression, k-Nearest neighbors, random forest, and decision tree—for predicting the room temperature in a Trombe wall system. The accuracy of the algorithms was assessed using <em>R</em>² and RMSE values. The results demonstrated that the k-Nearest neighbors and random forest algorithms exhibited superior performance, with <em>R</em>² and RMSE values of 1 and 0. In contrast, linear regression and decision tree showed weaker performance. These findings highlight the potential of advanced machine learning algorithms for accurate room temperature prediction in Trombe wall systems, enabling informed design decisions to enhance energy efficiency.</div></div>","PeriodicalId":100472,"journal":{"name":"Energy Storage and Saving","volume":"3 4","pages":"Pages 243-249"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of room temperature in Trombe solar wall systems using machine learning algorithms\",\"authors\":\"Seyed Hossein Hashemi ,&nbsp;Zahra Besharati ,&nbsp;Seyed Abdolrasoul Hashemi ,&nbsp;Seyed Ali Hashemi ,&nbsp;Aziz Babapoor\",\"doi\":\"10.1016/j.enss.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A Trombe wall-heating system is used to absorb solar energy to heat buildings. Different parameters affect the system performance for optimal heating. This study evaluated the performance of four machine learning algorithms—linear regression, k-Nearest neighbors, random forest, and decision tree—for predicting the room temperature in a Trombe wall system. The accuracy of the algorithms was assessed using <em>R</em>² and RMSE values. The results demonstrated that the k-Nearest neighbors and random forest algorithms exhibited superior performance, with <em>R</em>² and RMSE values of 1 and 0. In contrast, linear regression and decision tree showed weaker performance. These findings highlight the potential of advanced machine learning algorithms for accurate room temperature prediction in Trombe wall systems, enabling informed design decisions to enhance energy efficiency.</div></div>\",\"PeriodicalId\":100472,\"journal\":{\"name\":\"Energy Storage and Saving\",\"volume\":\"3 4\",\"pages\":\"Pages 243-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage and Saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772683524000396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage and Saving","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772683524000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Trombe墙壁加热系统用于吸收太阳能来加热建筑物。不同的参数会影响系统的性能以达到最佳加热效果。本研究评估了四种机器学习算法——线性回归、k近邻、随机森林和决策树——在预测Trombe墙系统中的室温方面的性能。使用R²和RMSE值评估算法的准确性。结果表明,k近邻算法和随机森林算法表现出较好的性能,R²和RMSE值分别为1和0。相比之下,线性回归和决策树的性能较差。这些发现突出了先进的机器学习算法在Trombe墙系统中准确预测室温的潜力,使明智的设计决策能够提高能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of room temperature in Trombe solar wall systems using machine learning algorithms
A Trombe wall-heating system is used to absorb solar energy to heat buildings. Different parameters affect the system performance for optimal heating. This study evaluated the performance of four machine learning algorithms—linear regression, k-Nearest neighbors, random forest, and decision tree—for predicting the room temperature in a Trombe wall system. The accuracy of the algorithms was assessed using R² and RMSE values. The results demonstrated that the k-Nearest neighbors and random forest algorithms exhibited superior performance, with R² and RMSE values of 1 and 0. In contrast, linear regression and decision tree showed weaker performance. These findings highlight the potential of advanced machine learning algorithms for accurate room temperature prediction in Trombe wall systems, enabling informed design decisions to enhance energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信