非零背景下逆时空非局域短脉冲方程的呼吸者、呼吸者位置、异常波

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Jiaqing Shan, Maohua Li
{"title":"非零背景下逆时空非局域短脉冲方程的呼吸者、呼吸者位置、异常波","authors":"Jiaqing Shan,&nbsp;Maohua Li","doi":"10.1016/j.wavemoti.2024.103448","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, by using the Darboux transformation (DT), two types of breather solutions for the reverse space–time (RST) nonlocal short pulse equation are constructed in nonzero background: bounded and unbounded breather solutions. The degenerate DT is obtained by taking the limit of eigenvalues and performing a higher-order Taylor expansion. Then the <span><math><mi>N</mi></math></span> order breather-positon solutions are generated through degenerate DT. Some properties of the breather-positon solutions are discussed. Furthermore, rogue wave solutions are derived through the degeneration of breather-positon solutions.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"133 ","pages":"Article 103448"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The breather, breather-positon, rogue wave for the reverse space–time nonlocal short pulse equation in nonzero background\",\"authors\":\"Jiaqing Shan,&nbsp;Maohua Li\",\"doi\":\"10.1016/j.wavemoti.2024.103448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, by using the Darboux transformation (DT), two types of breather solutions for the reverse space–time (RST) nonlocal short pulse equation are constructed in nonzero background: bounded and unbounded breather solutions. The degenerate DT is obtained by taking the limit of eigenvalues and performing a higher-order Taylor expansion. Then the <span><math><mi>N</mi></math></span> order breather-positon solutions are generated through degenerate DT. Some properties of the breather-positon solutions are discussed. Furthermore, rogue wave solutions are derived through the degeneration of breather-positon solutions.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"133 \",\"pages\":\"Article 103448\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001781\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001781","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用达布变换(DT),在非零背景下构造了逆时空(RST)非局部短脉冲方程的两类呼吸解:有界呼吸解和无界呼吸解。简并DT是通过取特征值的极限并进行高阶泰勒展开式得到的。然后通过简并DT生成N阶呼吸位置解。讨论了呼吸位置解的一些性质。此外,通过对呼吸位置解的退化,推导出了异常波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The breather, breather-positon, rogue wave for the reverse space–time nonlocal short pulse equation in nonzero background
In this paper, by using the Darboux transformation (DT), two types of breather solutions for the reverse space–time (RST) nonlocal short pulse equation are constructed in nonzero background: bounded and unbounded breather solutions. The degenerate DT is obtained by taking the limit of eigenvalues and performing a higher-order Taylor expansion. Then the N order breather-positon solutions are generated through degenerate DT. Some properties of the breather-positon solutions are discussed. Furthermore, rogue wave solutions are derived through the degeneration of breather-positon solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信