采用Ag修饰ZnO纳米片的高灵敏度乙醇气体传感器

IF 4.1 Q1 CHEMISTRY, ANALYTICAL
Yi-Hsing Liu , Sheng-Joue Young , Liang-Wen Ji , Yen-Lin Chu , Shoou-Jinn Chang
{"title":"采用Ag修饰ZnO纳米片的高灵敏度乙醇气体传感器","authors":"Yi-Hsing Liu ,&nbsp;Sheng-Joue Young ,&nbsp;Liang-Wen Ji ,&nbsp;Yen-Lin Chu ,&nbsp;Shoou-Jinn Chang","doi":"10.1016/j.talo.2024.100386","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an ethanol gas sensor was developed using ZnO nanosheets synthesized through an aqueous solution method, with Ag nanoparticles modified on the surface via chemical reduction to enhance ethanol gas sensing capabilities. We discuss the optimal sensitivity, selectivity, stability and optimal operating temperature conditions of Ag/ZnO samples. The selectivity measurement included methanol, ethanol, isopropanol and propanol, and the results showed that Ag/ZnO sample has the best selectivity for ethanol gas and the best sensitivity to ethanol gas (100 ppm, 28.78) when the device operates at 270 °C compared to ZnO sample (100 ppm, 2.27). The flaky structure of the ZnO nanosheets provides a high surface-to-volume ratio, which is beneficial for gas sensing. The addition of Ag nanoparticles further improves the gas sensor performance due to the Ag nanoparticles can more readily capture electrons. The results indicate that the Ag-modified ZnO nanosheet gas sensor exhibits the highest selectivity, excellent stability, and high responsiveness to ethanol gas compared to the ZnO sensor.</div></div>","PeriodicalId":436,"journal":{"name":"Talanta Open","volume":"10 ","pages":"Article 100386"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-sensitive ethanol gas sensor using Ag modified ZnO nanosheets\",\"authors\":\"Yi-Hsing Liu ,&nbsp;Sheng-Joue Young ,&nbsp;Liang-Wen Ji ,&nbsp;Yen-Lin Chu ,&nbsp;Shoou-Jinn Chang\",\"doi\":\"10.1016/j.talo.2024.100386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, an ethanol gas sensor was developed using ZnO nanosheets synthesized through an aqueous solution method, with Ag nanoparticles modified on the surface via chemical reduction to enhance ethanol gas sensing capabilities. We discuss the optimal sensitivity, selectivity, stability and optimal operating temperature conditions of Ag/ZnO samples. The selectivity measurement included methanol, ethanol, isopropanol and propanol, and the results showed that Ag/ZnO sample has the best selectivity for ethanol gas and the best sensitivity to ethanol gas (100 ppm, 28.78) when the device operates at 270 °C compared to ZnO sample (100 ppm, 2.27). The flaky structure of the ZnO nanosheets provides a high surface-to-volume ratio, which is beneficial for gas sensing. The addition of Ag nanoparticles further improves the gas sensor performance due to the Ag nanoparticles can more readily capture electrons. The results indicate that the Ag-modified ZnO nanosheet gas sensor exhibits the highest selectivity, excellent stability, and high responsiveness to ethanol gas compared to the ZnO sensor.</div></div>\",\"PeriodicalId\":436,\"journal\":{\"name\":\"Talanta Open\",\"volume\":\"10 \",\"pages\":\"Article 100386\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666831924001000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666831924001000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究以水溶液法制备的ZnO纳米片为材料,在表面化学还原修饰银纳米颗粒,以增强乙醇气体传感能力。讨论了银/氧化锌样品的最佳灵敏度、选择性、稳定性和最佳操作温度条件。测定了甲醇、乙醇、异丙醇和丙醇的选择性,结果表明,与ZnO样品(100 ppm, 2.27)相比,当装置工作在270℃时,Ag/ZnO样品对乙醇气体(100 ppm, 28.78)具有最佳的选择性和最佳的灵敏度。ZnO纳米片的片状结构提供了高的表面体积比,这有利于气体传感。银纳米颗粒的加入进一步提高了气体传感器的性能,因为银纳米颗粒可以更容易地捕获电子。结果表明,与ZnO传感器相比,ag修饰的ZnO纳米片气体传感器具有最高的选择性、优异的稳定性和对乙醇气体的高响应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-sensitive ethanol gas sensor using Ag modified ZnO nanosheets
In this study, an ethanol gas sensor was developed using ZnO nanosheets synthesized through an aqueous solution method, with Ag nanoparticles modified on the surface via chemical reduction to enhance ethanol gas sensing capabilities. We discuss the optimal sensitivity, selectivity, stability and optimal operating temperature conditions of Ag/ZnO samples. The selectivity measurement included methanol, ethanol, isopropanol and propanol, and the results showed that Ag/ZnO sample has the best selectivity for ethanol gas and the best sensitivity to ethanol gas (100 ppm, 28.78) when the device operates at 270 °C compared to ZnO sample (100 ppm, 2.27). The flaky structure of the ZnO nanosheets provides a high surface-to-volume ratio, which is beneficial for gas sensing. The addition of Ag nanoparticles further improves the gas sensor performance due to the Ag nanoparticles can more readily capture electrons. The results indicate that the Ag-modified ZnO nanosheet gas sensor exhibits the highest selectivity, excellent stability, and high responsiveness to ethanol gas compared to the ZnO sensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta Open
Talanta Open Chemistry-Analytical Chemistry
CiteScore
5.20
自引率
0.00%
发文量
86
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信