Sheng-Kuei Chiu , Bo-Cyuan Lin , Lu-Chih Chen , Hau-Gung Chen , Cheng-Chi Peng , Zhi-Chao Yang
{"title":"前驱体和化学气相沉积工艺对二维氮化钼纳米材料合成的影响","authors":"Sheng-Kuei Chiu , Bo-Cyuan Lin , Lu-Chih Chen , Hau-Gung Chen , Cheng-Chi Peng , Zhi-Chao Yang","doi":"10.1016/j.surfcoat.2024.131577","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers have extensively investigated 2D nanomaterials of TMN owing to its superior chemical and physical characteristics and numerous potential uses. Research on the synthesis of TMNs was insufficient and remained stagnant. Here, we alter precursor types and substrates and develop three CVD procedures for synthesizing TMN. High-quality signal-crystal MoN nanoflakes were synthesized using sodium molybdate precursors. The same growth conditions directly induced the formation of Mo<sub>5</sub>N<sub>6</sub> nanofilms on sapphire substrate. We synthesized large-area MoN nanofilms on silicon substrates by conducting a nitrogen substitution reaction on MoS<sub>2</sub> nanofilms. MoS<sub>2</sub> serves as the precursor for MoN nanofilms synthesis via nitridation. MoN's characteristic peak at 143.34 cm<sup>−1</sup> was located using Raman spectroscopy. We obtained epitaxial growth of Mo<sub>5</sub>N<sub>6</sub> nanofilms at low pressure (66 cm Hg) on a sapphire substrate. Mo<sub>5</sub>N<sub>6</sub> nanofilms exhibited a distinctive Raman spectroscopy signal at 154.03 cm<sup>−1</sup>. In anticipation of its prospective applications, we assessed the electrical properties of Mo<sub>5</sub>N<sub>6</sub> nanofilms. Additionally, the resistivity of Mo<sub>5</sub>N<sub>6</sub> was found to be 1.555*10<sup>−5</sup> Ωcm. Large-area 2D nanomaterials, such as Mo<sub>5</sub>N<sub>6</sub>, have the potential to be employed as graphene or other semimetal materials in the electronic device industry, as evidenced by the temperature dependency of the conductivity test.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"496 ","pages":"Article 131577"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of the precursors and chemical vapor deposition process on the synthesis of two-dimensional molybdenum nitride nanomaterials\",\"authors\":\"Sheng-Kuei Chiu , Bo-Cyuan Lin , Lu-Chih Chen , Hau-Gung Chen , Cheng-Chi Peng , Zhi-Chao Yang\",\"doi\":\"10.1016/j.surfcoat.2024.131577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Researchers have extensively investigated 2D nanomaterials of TMN owing to its superior chemical and physical characteristics and numerous potential uses. Research on the synthesis of TMNs was insufficient and remained stagnant. Here, we alter precursor types and substrates and develop three CVD procedures for synthesizing TMN. High-quality signal-crystal MoN nanoflakes were synthesized using sodium molybdate precursors. The same growth conditions directly induced the formation of Mo<sub>5</sub>N<sub>6</sub> nanofilms on sapphire substrate. We synthesized large-area MoN nanofilms on silicon substrates by conducting a nitrogen substitution reaction on MoS<sub>2</sub> nanofilms. MoS<sub>2</sub> serves as the precursor for MoN nanofilms synthesis via nitridation. MoN's characteristic peak at 143.34 cm<sup>−1</sup> was located using Raman spectroscopy. We obtained epitaxial growth of Mo<sub>5</sub>N<sub>6</sub> nanofilms at low pressure (66 cm Hg) on a sapphire substrate. Mo<sub>5</sub>N<sub>6</sub> nanofilms exhibited a distinctive Raman spectroscopy signal at 154.03 cm<sup>−1</sup>. In anticipation of its prospective applications, we assessed the electrical properties of Mo<sub>5</sub>N<sub>6</sub> nanofilms. Additionally, the resistivity of Mo<sub>5</sub>N<sub>6</sub> was found to be 1.555*10<sup>−5</sup> Ωcm. Large-area 2D nanomaterials, such as Mo<sub>5</sub>N<sub>6</sub>, have the potential to be employed as graphene or other semimetal materials in the electronic device industry, as evidenced by the temperature dependency of the conductivity test.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"496 \",\"pages\":\"Article 131577\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224012088\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224012088","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
摘要
由于其优越的化学和物理特性以及许多潜在的用途,研究人员对二维纳米TMN材料进行了广泛的研究。对TMNs的合成研究不足,处于停滞状态。在这里,我们改变前驱体类型和底物,并开发了三种CVD方法来合成TMN。以钼酸钠为前驱体制备了高质量的单晶硅信号晶体纳米片。相同的生长条件直接诱导了蓝宝石衬底上Mo5N6纳米膜的形成。通过在MoS2纳米膜上进行氮取代反应,在硅衬底上合成了大面积的MoN纳米膜。二硫化钼作为氮化合成单晶硅纳米膜的前驱体。利用拉曼光谱确定了MoN在143.34 cm−1处的特征峰。我们在蓝宝石衬底上获得了低压(66 cm Hg)下Mo5N6纳米膜的外延生长。Mo5N6纳米膜在154.03 cm−1处表现出独特的拉曼光谱信号。展望其潜在的应用前景,我们评估了Mo5N6纳米膜的电学性能。Mo5N6的电阻率为1.555*10−5 Ωcm。大面积二维纳米材料,如Mo5N6,在电子器件工业中有潜力被用作石墨烯或其他半金属材料,电导率测试的温度依赖性证明了这一点。
The effect of the precursors and chemical vapor deposition process on the synthesis of two-dimensional molybdenum nitride nanomaterials
Researchers have extensively investigated 2D nanomaterials of TMN owing to its superior chemical and physical characteristics and numerous potential uses. Research on the synthesis of TMNs was insufficient and remained stagnant. Here, we alter precursor types and substrates and develop three CVD procedures for synthesizing TMN. High-quality signal-crystal MoN nanoflakes were synthesized using sodium molybdate precursors. The same growth conditions directly induced the formation of Mo5N6 nanofilms on sapphire substrate. We synthesized large-area MoN nanofilms on silicon substrates by conducting a nitrogen substitution reaction on MoS2 nanofilms. MoS2 serves as the precursor for MoN nanofilms synthesis via nitridation. MoN's characteristic peak at 143.34 cm−1 was located using Raman spectroscopy. We obtained epitaxial growth of Mo5N6 nanofilms at low pressure (66 cm Hg) on a sapphire substrate. Mo5N6 nanofilms exhibited a distinctive Raman spectroscopy signal at 154.03 cm−1. In anticipation of its prospective applications, we assessed the electrical properties of Mo5N6 nanofilms. Additionally, the resistivity of Mo5N6 was found to be 1.555*10−5 Ωcm. Large-area 2D nanomaterials, such as Mo5N6, have the potential to be employed as graphene or other semimetal materials in the electronic device industry, as evidenced by the temperature dependency of the conductivity test.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.