半导体制造过程中气体流量的校准标准、设备和方法综述

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Gaoming Zhang , Boxu Hui , Zhipeng Xu , Bin Zhou , Bengt Sundén , Zhen Cao
{"title":"半导体制造过程中气体流量的校准标准、设备和方法综述","authors":"Gaoming Zhang ,&nbsp;Boxu Hui ,&nbsp;Zhipeng Xu ,&nbsp;Bin Zhou ,&nbsp;Bengt Sundén ,&nbsp;Zhen Cao","doi":"10.1016/j.flowmeasinst.2024.102753","DOIUrl":null,"url":null,"abstract":"<div><div>Semiconductor manufacturing involves various gases in about 500 processes of oxidation, vapor deposition, lithography, etching doping, inerting, annealing, and chamber cleaning. To ensure the quality of manufactured semiconductors, accurate and reproducible gas flow measurement and control are necessary. Gas flow standards with low uncertainty are the foundation of accurate gas flow measurements and traceability for flow meters and mass flow controllers used in semiconductor manufacturing. Besides, physical models are significant to calculate or correct the measured flow rate and extrapolate calibration results to unknown gases introduced into the manufacturing process. Thus, in this work the intention is to provide the principles, structures and performances of gas flow standards used for calibration of process gases and corresponding models and methods for gas flow calculation and corrections. The aim is to provide some advice on measurement and calibration of gas flow in semiconductor manufacturing processes.</div></div>","PeriodicalId":50440,"journal":{"name":"Flow Measurement and Instrumentation","volume":"101 ","pages":"Article 102753"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of calibration standards, devices and methods for gas flow in semiconductor manufacturing processes\",\"authors\":\"Gaoming Zhang ,&nbsp;Boxu Hui ,&nbsp;Zhipeng Xu ,&nbsp;Bin Zhou ,&nbsp;Bengt Sundén ,&nbsp;Zhen Cao\",\"doi\":\"10.1016/j.flowmeasinst.2024.102753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Semiconductor manufacturing involves various gases in about 500 processes of oxidation, vapor deposition, lithography, etching doping, inerting, annealing, and chamber cleaning. To ensure the quality of manufactured semiconductors, accurate and reproducible gas flow measurement and control are necessary. Gas flow standards with low uncertainty are the foundation of accurate gas flow measurements and traceability for flow meters and mass flow controllers used in semiconductor manufacturing. Besides, physical models are significant to calculate or correct the measured flow rate and extrapolate calibration results to unknown gases introduced into the manufacturing process. Thus, in this work the intention is to provide the principles, structures and performances of gas flow standards used for calibration of process gases and corresponding models and methods for gas flow calculation and corrections. The aim is to provide some advice on measurement and calibration of gas flow in semiconductor manufacturing processes.</div></div>\",\"PeriodicalId\":50440,\"journal\":{\"name\":\"Flow Measurement and Instrumentation\",\"volume\":\"101 \",\"pages\":\"Article 102753\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow Measurement and Instrumentation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955598624002334\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow Measurement and Instrumentation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955598624002334","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

半导体制造涉及大约500个过程中的各种气体,包括氧化、气相沉积、光刻、蚀刻、掺杂、惰化、退火和室清洗。为了保证制造的半导体的质量,精确和可重复的气体流量测量和控制是必要的。具有低不确定度的气体流量标准是半导体制造中使用的流量计和质量流量控制器精确气体流量测量和可追溯性的基础。此外,物理模型对于计算或校正测量流量以及将校准结果外推到引入制造过程的未知气体具有重要意义。因此,在本工作中,目的是提供用于校准过程气体的气体流量标准的原理、结构和性能,以及相应的气体流量计算和校正的模型和方法。目的是为半导体制造过程中气体流量的测量和校准提供一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of calibration standards, devices and methods for gas flow in semiconductor manufacturing processes
Semiconductor manufacturing involves various gases in about 500 processes of oxidation, vapor deposition, lithography, etching doping, inerting, annealing, and chamber cleaning. To ensure the quality of manufactured semiconductors, accurate and reproducible gas flow measurement and control are necessary. Gas flow standards with low uncertainty are the foundation of accurate gas flow measurements and traceability for flow meters and mass flow controllers used in semiconductor manufacturing. Besides, physical models are significant to calculate or correct the measured flow rate and extrapolate calibration results to unknown gases introduced into the manufacturing process. Thus, in this work the intention is to provide the principles, structures and performances of gas flow standards used for calibration of process gases and corresponding models and methods for gas flow calculation and corrections. The aim is to provide some advice on measurement and calibration of gas flow in semiconductor manufacturing processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Flow Measurement and Instrumentation
Flow Measurement and Instrumentation 工程技术-工程:机械
CiteScore
4.30
自引率
13.60%
发文量
123
审稿时长
6 months
期刊介绍: Flow Measurement and Instrumentation is dedicated to disseminating the latest research results on all aspects of flow measurement, in both closed conduits and open channels. The design of flow measurement systems involves a wide variety of multidisciplinary activities including modelling the flow sensor, the fluid flow and the sensor/fluid interactions through the use of computation techniques; the development of advanced transducer systems and their associated signal processing and the laboratory and field assessment of the overall system under ideal and disturbed conditions. FMI is the essential forum for critical information exchange, and contributions are particularly encouraged in the following areas of interest: Modelling: the application of mathematical and computational modelling to the interaction of fluid dynamics with flowmeters, including flowmeter behaviour, improved flowmeter design and installation problems. Application of CAD/CAE techniques to flowmeter modelling are eligible. Design and development: the detailed design of the flowmeter head and/or signal processing aspects of novel flowmeters. Emphasis is given to papers identifying new sensor configurations, multisensor flow measurement systems, non-intrusive flow metering techniques and the application of microelectronic techniques in smart or intelligent systems. Calibration techniques: including descriptions of new or existing calibration facilities and techniques, calibration data from different flowmeter types, and calibration intercomparison data from different laboratories. Installation effect data: dealing with the effects of non-ideal flow conditions on flowmeters. Papers combining a theoretical understanding of flowmeter behaviour with experimental work are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信