基于虚拟现实的农业远程操作人机交互的可行性研究

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Daniel Udekwe, Hasan Seyyedhasani
{"title":"基于虚拟现实的农业远程操作人机交互的可行性研究","authors":"Daniel Udekwe,&nbsp;Hasan Seyyedhasani","doi":"10.1016/j.compag.2024.109702","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing demand for efficient and sustainable agricultural practices, the automation of tasks such as crop inspection and harvesting has become a critical endeavor. However, the complex and dynamic nature of agricultural environments poses challenges for conventional methods that are fully autonomous or those relying on traditional interfaces. To address these challenges, we propose a solution that leverages the capabilities of Virtual Reality (VR) to provide operators with an intuitive and immersive control experience. This paper introduces a novel method for tele-operating a robotic system in agriculture using VR technology. By integrating a VR device with SteamVR and Unity 3D, users can control a mobile robotic module over a local network or the internet using VR hand controllers and a headset. In order to validates the system feasibility, we case studied two agricultural operations in lab settings: leaf inspection and crop harvesting.</div><div>The results of this study were evaluated based on the cycle completion time (CCT) and the success rate of robot-plant interaction (RPI). For fruit harvesting, with a sample size (N) = 5, the mean CCT was approximately 18 s, with a standard deviation of nearly 5 s, indicating an improvement compared to existing autonomous systems in the literature. Additionally, in the leaf inspections, the mean CCT resulted in approximately 26 s with the standard deviation of nearly 6 s with the same sample size. The RPI success rate reached up to 90 % in the fruit harvesting practices. And in leaf inspection practices, this metric averaged two attempts per diseased leaf, 50 %, to grasp it and bring it to the operator’s attention. Through this study, the combination of consumer-grade VR technologies with a mobile robotic manipulation system highlights the system’s promise in improving remote agricultural tasks, especially in response to labor scarcity and improving farmworker efficiency.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"228 ","pages":"Article 109702"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human robot interaction for agricultural Tele-Operation, using virtual Reality: A feasibility study\",\"authors\":\"Daniel Udekwe,&nbsp;Hasan Seyyedhasani\",\"doi\":\"10.1016/j.compag.2024.109702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increasing demand for efficient and sustainable agricultural practices, the automation of tasks such as crop inspection and harvesting has become a critical endeavor. However, the complex and dynamic nature of agricultural environments poses challenges for conventional methods that are fully autonomous or those relying on traditional interfaces. To address these challenges, we propose a solution that leverages the capabilities of Virtual Reality (VR) to provide operators with an intuitive and immersive control experience. This paper introduces a novel method for tele-operating a robotic system in agriculture using VR technology. By integrating a VR device with SteamVR and Unity 3D, users can control a mobile robotic module over a local network or the internet using VR hand controllers and a headset. In order to validates the system feasibility, we case studied two agricultural operations in lab settings: leaf inspection and crop harvesting.</div><div>The results of this study were evaluated based on the cycle completion time (CCT) and the success rate of robot-plant interaction (RPI). For fruit harvesting, with a sample size (N) = 5, the mean CCT was approximately 18 s, with a standard deviation of nearly 5 s, indicating an improvement compared to existing autonomous systems in the literature. Additionally, in the leaf inspections, the mean CCT resulted in approximately 26 s with the standard deviation of nearly 6 s with the same sample size. The RPI success rate reached up to 90 % in the fruit harvesting practices. And in leaf inspection practices, this metric averaged two attempts per diseased leaf, 50 %, to grasp it and bring it to the operator’s attention. Through this study, the combination of consumer-grade VR technologies with a mobile robotic manipulation system highlights the system’s promise in improving remote agricultural tasks, especially in response to labor scarcity and improving farmworker efficiency.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"228 \",\"pages\":\"Article 109702\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924010937\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924010937","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着对高效和可持续农业实践的需求不断增加,作物检验和收获等任务的自动化已成为一项重要的努力。然而,农业环境的复杂性和动态性对完全自主的传统方法或依赖传统接口的方法提出了挑战。为了应对这些挑战,我们提出了一种解决方案,利用虚拟现实(VR)的功能,为操作员提供直观和身临其境的控制体验。本文介绍了一种利用虚拟现实技术对农业机器人系统进行远程操作的新方法。通过将VR设备与SteamVR和Unity 3D集成,用户可以使用VR手控制器和耳机在本地网络或互联网上控制移动机器人模块。为了验证系统的可行性,我们在实验室环境中对两种农业操作进行了案例研究:叶片检查和作物收获。本研究的结果是基于周期完成时间(CCT)和机器人-植物相互作用(RPI)的成功率来评估的。对于水果收获,样本量(N) = 5,平均CCT约为18秒,标准差接近5秒,与文献中现有的自治系统相比有了改进。此外,在叶片检测中,在相同样本量下,平均CCT结果约为26 s,标准差接近6 s。在水果收获实践中,RPI成功率高达90%。在叶片检查实践中,这个指标平均为每片患病叶片两次尝试,50%,抓住它并引起操作员的注意。通过本研究,消费级VR技术与移动机器人操作系统的结合凸显了该系统在改善远程农业任务方面的前景,特别是在应对劳动力短缺和提高农场工人效率方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human robot interaction for agricultural Tele-Operation, using virtual Reality: A feasibility study
With the increasing demand for efficient and sustainable agricultural practices, the automation of tasks such as crop inspection and harvesting has become a critical endeavor. However, the complex and dynamic nature of agricultural environments poses challenges for conventional methods that are fully autonomous or those relying on traditional interfaces. To address these challenges, we propose a solution that leverages the capabilities of Virtual Reality (VR) to provide operators with an intuitive and immersive control experience. This paper introduces a novel method for tele-operating a robotic system in agriculture using VR technology. By integrating a VR device with SteamVR and Unity 3D, users can control a mobile robotic module over a local network or the internet using VR hand controllers and a headset. In order to validates the system feasibility, we case studied two agricultural operations in lab settings: leaf inspection and crop harvesting.
The results of this study were evaluated based on the cycle completion time (CCT) and the success rate of robot-plant interaction (RPI). For fruit harvesting, with a sample size (N) = 5, the mean CCT was approximately 18 s, with a standard deviation of nearly 5 s, indicating an improvement compared to existing autonomous systems in the literature. Additionally, in the leaf inspections, the mean CCT resulted in approximately 26 s with the standard deviation of nearly 6 s with the same sample size. The RPI success rate reached up to 90 % in the fruit harvesting practices. And in leaf inspection practices, this metric averaged two attempts per diseased leaf, 50 %, to grasp it and bring it to the operator’s attention. Through this study, the combination of consumer-grade VR technologies with a mobile robotic manipulation system highlights the system’s promise in improving remote agricultural tasks, especially in response to labor scarcity and improving farmworker efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信